Alireza Habibzadeh, Mehmet Ali Kucuker, Mertol Gökelma
{"title":"机械预处理对废弃硬盘中稀土元素和金回收潜力的影响","authors":"Alireza Habibzadeh, Mehmet Ali Kucuker, Mertol Gökelma","doi":"10.1007/s10163-024-02108-0","DOIUrl":null,"url":null,"abstract":"<div><p>The growing demand for rare-earth elements (REEs) and their limited availability have made REEs critical with high supply risk. E-waste, particularly waste electrical and electronic equipment (WEEE), offers a valuable secondary source. This study assesses the impact of mechanical pre-treatment on the recovery of REEs and gold from discarded hard disk drives (HDDs). We compared recovery efficiencies of REEs and Au using separation techniques, particle sizing, and chemical analyses between two pre-treatment methods: shredding and manual disassembly. Shredding, common in electronic waste processing, leads to oxidation and significant loss of critical raw materials (CRMs), while manual disassembly preserves clean, and non-oxidized NdFeB magnets for magnet-to-magnet recycling. Manually disassembled HDDs were directly analyzed to determine recyclable quantities of REEs and gold. Shredded HDDs underwent sieving, density, and magnetic separation, followed by demagnetization and chemical analysis. Results indicate shredding causes a 73.9% loss of REEs and a 43.8% loss of Au compared to manual disassembly, with increased oxidation due to finer particles. These findings suggest that while shredding is adequate for recovering ferrous and aluminum fractions, manual disassembly is essential for maximizing REE recovery.</p></div>","PeriodicalId":643,"journal":{"name":"Journal of Material Cycles and Waste Management","volume":"27 1","pages":"257 - 269"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of mechanical pre-treatment on the recovery potential of rare-earth elements and gold from discarded hard disc drives\",\"authors\":\"Alireza Habibzadeh, Mehmet Ali Kucuker, Mertol Gökelma\",\"doi\":\"10.1007/s10163-024-02108-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The growing demand for rare-earth elements (REEs) and their limited availability have made REEs critical with high supply risk. E-waste, particularly waste electrical and electronic equipment (WEEE), offers a valuable secondary source. This study assesses the impact of mechanical pre-treatment on the recovery of REEs and gold from discarded hard disk drives (HDDs). We compared recovery efficiencies of REEs and Au using separation techniques, particle sizing, and chemical analyses between two pre-treatment methods: shredding and manual disassembly. Shredding, common in electronic waste processing, leads to oxidation and significant loss of critical raw materials (CRMs), while manual disassembly preserves clean, and non-oxidized NdFeB magnets for magnet-to-magnet recycling. Manually disassembled HDDs were directly analyzed to determine recyclable quantities of REEs and gold. Shredded HDDs underwent sieving, density, and magnetic separation, followed by demagnetization and chemical analysis. Results indicate shredding causes a 73.9% loss of REEs and a 43.8% loss of Au compared to manual disassembly, with increased oxidation due to finer particles. These findings suggest that while shredding is adequate for recovering ferrous and aluminum fractions, manual disassembly is essential for maximizing REE recovery.</p></div>\",\"PeriodicalId\":643,\"journal\":{\"name\":\"Journal of Material Cycles and Waste Management\",\"volume\":\"27 1\",\"pages\":\"257 - 269\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Material Cycles and Waste Management\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10163-024-02108-0\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Material Cycles and Waste Management","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10163-024-02108-0","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Effect of mechanical pre-treatment on the recovery potential of rare-earth elements and gold from discarded hard disc drives
The growing demand for rare-earth elements (REEs) and their limited availability have made REEs critical with high supply risk. E-waste, particularly waste electrical and electronic equipment (WEEE), offers a valuable secondary source. This study assesses the impact of mechanical pre-treatment on the recovery of REEs and gold from discarded hard disk drives (HDDs). We compared recovery efficiencies of REEs and Au using separation techniques, particle sizing, and chemical analyses between two pre-treatment methods: shredding and manual disassembly. Shredding, common in electronic waste processing, leads to oxidation and significant loss of critical raw materials (CRMs), while manual disassembly preserves clean, and non-oxidized NdFeB magnets for magnet-to-magnet recycling. Manually disassembled HDDs were directly analyzed to determine recyclable quantities of REEs and gold. Shredded HDDs underwent sieving, density, and magnetic separation, followed by demagnetization and chemical analysis. Results indicate shredding causes a 73.9% loss of REEs and a 43.8% loss of Au compared to manual disassembly, with increased oxidation due to finer particles. These findings suggest that while shredding is adequate for recovering ferrous and aluminum fractions, manual disassembly is essential for maximizing REE recovery.
期刊介绍:
The Journal of Material Cycles and Waste Management has a twofold focus: research in technical, political, and environmental problems of material cycles and waste management; and information that contributes to the development of an interdisciplinary science of material cycles and waste management. Its aim is to develop solutions and prescriptions for material cycles.
The journal publishes original articles, reviews, and invited papers from a wide range of disciplines related to material cycles and waste management.
The journal is published in cooperation with the Japan Society of Material Cycles and Waste Management (JSMCWM) and the Korea Society of Waste Management (KSWM).