利用经验方法对喜马拉雅Kumaon地区安装传感器的地点进行分类

IF 1.827 Q2 Earth and Planetary Sciences Arabian Journal of Geosciences Pub Date : 2025-01-09 DOI:10.1007/s12517-024-12154-5
Pankaj Kumar,  Kamal, Ashok Kumar
{"title":"利用经验方法对喜马拉雅Kumaon地区安装传感器的地点进行分类","authors":"Pankaj Kumar,&nbsp; Kamal,&nbsp;Ashok Kumar","doi":"10.1007/s12517-024-12154-5","DOIUrl":null,"url":null,"abstract":"<div><p>Seismic site classification not only is crucial for seismic hazard assessment but also influences the reliability of ground motion data. The present study classifies 81 locations where Uttarakhand State Earthquake Early Warning System (UEEWS) seismic sensors are installed in the Kumaon region. The ground motion records of earthquakes occurring between 2019 and 2023 have been used as the dataset for this work. A winnowing approach has been applied to select good records from the dataset, and then, spectral acceleration (SA) and pseudo-spectral acceleration (PSA) have been derived for all the records. The horizontal-to-vertical spectral ratio (HVSR) curves have been created using SA and PSA. Four methods with the eight classification approaches have been applied to classify the sites. The first method uses the predominant period obtained from the average HVSR curve of the site and classifies it according to the standard schemes. In the second method, three approaches estimate the site classification index (SCI) by correlating the site’s HVSR curve with standard HVSR curves. In the third method, time-averaged shear wave velocity (<i>V</i><sub>s30</sub>) from the depth of 30 m to the surface of the earth, is estimated using two different empirical models, while in the fourth method, PSA is normalized by peak ground acceleration (PGA). The results from all the approaches have been thoroughly examined and the final classification has been made by comparing them with the standard curves. Out of 81 sites, 31, 23, 1, 1, 6, 2, and 17 have been classified as classes I, II, III, IV, V, VI, and VII, respectively. The description of site categories has been explained in the subsequent sections. It has also been illustrated that the earthquake’s magnitude, epicentral distance, and depth do not affect the predominant period of the sites. The classification of sites plays a crucial role in advancing seismic hazard investigations of the Uttarakhand region, as strong ground motion records are the primary input along with the site’s conditions. This study will be valuable in helping to mitigate potential earthquake damages in the future.</p></div>","PeriodicalId":476,"journal":{"name":"Arabian Journal of Geosciences","volume":"18 1","pages":""},"PeriodicalIF":1.8270,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Site classification of locations of installed sensors in the Kumaon Region of the Himalayas using empirical approaches\",\"authors\":\"Pankaj Kumar,&nbsp; Kamal,&nbsp;Ashok Kumar\",\"doi\":\"10.1007/s12517-024-12154-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Seismic site classification not only is crucial for seismic hazard assessment but also influences the reliability of ground motion data. The present study classifies 81 locations where Uttarakhand State Earthquake Early Warning System (UEEWS) seismic sensors are installed in the Kumaon region. The ground motion records of earthquakes occurring between 2019 and 2023 have been used as the dataset for this work. A winnowing approach has been applied to select good records from the dataset, and then, spectral acceleration (SA) and pseudo-spectral acceleration (PSA) have been derived for all the records. The horizontal-to-vertical spectral ratio (HVSR) curves have been created using SA and PSA. Four methods with the eight classification approaches have been applied to classify the sites. The first method uses the predominant period obtained from the average HVSR curve of the site and classifies it according to the standard schemes. In the second method, three approaches estimate the site classification index (SCI) by correlating the site’s HVSR curve with standard HVSR curves. In the third method, time-averaged shear wave velocity (<i>V</i><sub>s30</sub>) from the depth of 30 m to the surface of the earth, is estimated using two different empirical models, while in the fourth method, PSA is normalized by peak ground acceleration (PGA). The results from all the approaches have been thoroughly examined and the final classification has been made by comparing them with the standard curves. Out of 81 sites, 31, 23, 1, 1, 6, 2, and 17 have been classified as classes I, II, III, IV, V, VI, and VII, respectively. The description of site categories has been explained in the subsequent sections. It has also been illustrated that the earthquake’s magnitude, epicentral distance, and depth do not affect the predominant period of the sites. The classification of sites plays a crucial role in advancing seismic hazard investigations of the Uttarakhand region, as strong ground motion records are the primary input along with the site’s conditions. This study will be valuable in helping to mitigate potential earthquake damages in the future.</p></div>\",\"PeriodicalId\":476,\"journal\":{\"name\":\"Arabian Journal of Geosciences\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8270,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arabian Journal of Geosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12517-024-12154-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arabian Journal of Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s12517-024-12154-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0

摘要

地震场地分类不仅是地震危险性评价的关键,而且影响地震动资料的可靠性。目前的研究对Kumaon地区北阿坎德邦地震预警系统(UEEWS)地震传感器安装的81个地点进行了分类。2019年至2023年发生的地震的地面运动记录被用作这项工作的数据集。采用筛选的方法从数据集中筛选出较好的记录,然后对所有记录进行谱加速度(SA)和伪谱加速度(PSA)计算。利用SA和PSA建立了水平-垂直光谱比(HVSR)曲线。采用了四种方法和八种分类方法对遗址进行了分类。第一种方法利用场地HVSR平均曲线得到的优势周期,按标准方案进行分类。在第二种方法中,三种方法通过将站点的HVSR曲线与标准HVSR曲线相关联来估计站点分类指数(SCI)。第三种方法采用两种不同的经验模型估计了从30 m深度到地表的时均横波速度(Vs30),而第四种方法采用峰值地面加速度(PGA)对PSA进行归一化。所有方法的结果都经过了彻底的检验,并通过与标准曲线的比较进行了最终的分类。在81个遗址中,分别有31个、23个、1个、1个、6个、2个和17个被划分为I、II、III、IV、V、VI和VII类。网站类别的描述已在后面的章节中解释。研究还表明,地震的震级、震中距离和震源深度对地震发生的主要时期没有影响。场地的分类在推进北阿坎德邦地区的地震灾害调查中起着至关重要的作用,因为强地面运动记录是与场地条件一起的主要输入。这项研究将有助于减轻未来潜在的地震破坏。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Site classification of locations of installed sensors in the Kumaon Region of the Himalayas using empirical approaches

Seismic site classification not only is crucial for seismic hazard assessment but also influences the reliability of ground motion data. The present study classifies 81 locations where Uttarakhand State Earthquake Early Warning System (UEEWS) seismic sensors are installed in the Kumaon region. The ground motion records of earthquakes occurring between 2019 and 2023 have been used as the dataset for this work. A winnowing approach has been applied to select good records from the dataset, and then, spectral acceleration (SA) and pseudo-spectral acceleration (PSA) have been derived for all the records. The horizontal-to-vertical spectral ratio (HVSR) curves have been created using SA and PSA. Four methods with the eight classification approaches have been applied to classify the sites. The first method uses the predominant period obtained from the average HVSR curve of the site and classifies it according to the standard schemes. In the second method, three approaches estimate the site classification index (SCI) by correlating the site’s HVSR curve with standard HVSR curves. In the third method, time-averaged shear wave velocity (Vs30) from the depth of 30 m to the surface of the earth, is estimated using two different empirical models, while in the fourth method, PSA is normalized by peak ground acceleration (PGA). The results from all the approaches have been thoroughly examined and the final classification has been made by comparing them with the standard curves. Out of 81 sites, 31, 23, 1, 1, 6, 2, and 17 have been classified as classes I, II, III, IV, V, VI, and VII, respectively. The description of site categories has been explained in the subsequent sections. It has also been illustrated that the earthquake’s magnitude, epicentral distance, and depth do not affect the predominant period of the sites. The classification of sites plays a crucial role in advancing seismic hazard investigations of the Uttarakhand region, as strong ground motion records are the primary input along with the site’s conditions. This study will be valuable in helping to mitigate potential earthquake damages in the future.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Arabian Journal of Geosciences
Arabian Journal of Geosciences GEOSCIENCES, MULTIDISCIPLINARY-
自引率
0.00%
发文量
1587
审稿时长
6.7 months
期刊介绍: The Arabian Journal of Geosciences is the official journal of the Saudi Society for Geosciences and publishes peer-reviewed original and review articles on the entire range of Earth Science themes, focused on, but not limited to, those that have regional significance to the Middle East and the Euro-Mediterranean Zone. Key topics therefore include; geology, hydrogeology, earth system science, petroleum sciences, geophysics, seismology and crustal structures, tectonics, sedimentology, palaeontology, metamorphic and igneous petrology, natural hazards, environmental sciences and sustainable development, geoarchaeology, geomorphology, paleo-environment studies, oceanography, atmospheric sciences, GIS and remote sensing, geodesy, mineralogy, volcanology, geochemistry and metallogenesis.
期刊最新文献
Numerical investigation on energy efficiency of horizontal heat pump systems in buildings heating and cooling: case study of Mostaganem (Algeria) Stability analysis of overburden rocks—a new approach An up-to-date perspective on technological accidents triggered by natural events Investigation of radiation shielding parameters of different heavy metallic glass compositions for gamma radiations Microbial dynamics in soil: Impacts on fertility, nutrient cycling, and soil properties for sustainable geosciences—people, planet, and prosperity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1