{"title":"寻求单一范德瓦尔斯环:一个适合丙烷参考公式的四参数三次状态方程","authors":"Jan Hrubý, Aleš Blahut","doi":"10.1007/s10765-024-03483-4","DOIUrl":null,"url":null,"abstract":"<div><p>Modern multiparameter equations of state (MP EOSs) enable accurate computation of thermodynamic properties of fluids in broad ranges of temperature and pressure. Between the saturated vapor and saturated liquid densities, a pressure vs. density isotherm computed with an MP EOS exhibits several oscillations with large amplitudes. This is not a problem for most engineering computations, because this portion of isotherm is replaced with a horizontal line, representing an equilibrium mixture of the vapor and liquid phases. However, for computing properties in metastable states, modeling phase interfaces with gradient theory, and certain models of fluid mixtures, an isotherm with a single maximum and a single minimum (single van der Waals loop) is needed. As a step toward an accurate, single-loop EOS, we propose a generalized four-parameter cubic (G4C) EOS. The four parameters are temperature functions which are fitted, at subcritical temperatures, to the second virial coefficient, saturation pressure, liquid density and compressibility, and, in the supercritical region, to the second virial coefficient and derivatives of pressure. Fitted data were generated from thermodynamic property formulation for propane (Lemmon et al. J Chem Eng Data 54:3141, 2009). The G4C EOS provides a representation of thermodynamic properties of propane in the gaseous, liquid, and supercritical regions, which is sufficiently accurate for the intended applications. The equation can be extrapolated to high temperatures. Between 85.5 K and 296 K, the density and compressibility of the saturated liquid are represented with an average absolute relative deviation (AARD) of, respectively, 0.04 and 0.25 percent, the density and compressibility of saturated vapor show AARD of 0.31 and 0.39 percent, and the saturation pressure deviates by 0.23 percent. Features to be improved in future are temperature dependencies of the third- and higher-order virial coefficients at low temperatures, the curvature of isotherms in the liquid region, liquid density at very high pressures, and the critical region. Developed G4C EOS was successfully used in a new mixture model (Hrubý Int J Thermophys 44:130, 2023) to model volumetric behavior and vapor–liquid equilibrium in asymmetric mixtures with propane as a low-volatile component.</p></div>","PeriodicalId":598,"journal":{"name":"International Journal of Thermophysics","volume":"46 2","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quest for a Single van der Waals Loop: A Four-Parameter Cubic Equation of State Tailored to a Reference Formulation for Propane\",\"authors\":\"Jan Hrubý, Aleš Blahut\",\"doi\":\"10.1007/s10765-024-03483-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Modern multiparameter equations of state (MP EOSs) enable accurate computation of thermodynamic properties of fluids in broad ranges of temperature and pressure. Between the saturated vapor and saturated liquid densities, a pressure vs. density isotherm computed with an MP EOS exhibits several oscillations with large amplitudes. This is not a problem for most engineering computations, because this portion of isotherm is replaced with a horizontal line, representing an equilibrium mixture of the vapor and liquid phases. However, for computing properties in metastable states, modeling phase interfaces with gradient theory, and certain models of fluid mixtures, an isotherm with a single maximum and a single minimum (single van der Waals loop) is needed. As a step toward an accurate, single-loop EOS, we propose a generalized four-parameter cubic (G4C) EOS. The four parameters are temperature functions which are fitted, at subcritical temperatures, to the second virial coefficient, saturation pressure, liquid density and compressibility, and, in the supercritical region, to the second virial coefficient and derivatives of pressure. Fitted data were generated from thermodynamic property formulation for propane (Lemmon et al. J Chem Eng Data 54:3141, 2009). The G4C EOS provides a representation of thermodynamic properties of propane in the gaseous, liquid, and supercritical regions, which is sufficiently accurate for the intended applications. The equation can be extrapolated to high temperatures. Between 85.5 K and 296 K, the density and compressibility of the saturated liquid are represented with an average absolute relative deviation (AARD) of, respectively, 0.04 and 0.25 percent, the density and compressibility of saturated vapor show AARD of 0.31 and 0.39 percent, and the saturation pressure deviates by 0.23 percent. Features to be improved in future are temperature dependencies of the third- and higher-order virial coefficients at low temperatures, the curvature of isotherms in the liquid region, liquid density at very high pressures, and the critical region. Developed G4C EOS was successfully used in a new mixture model (Hrubý Int J Thermophys 44:130, 2023) to model volumetric behavior and vapor–liquid equilibrium in asymmetric mixtures with propane as a low-volatile component.</p></div>\",\"PeriodicalId\":598,\"journal\":{\"name\":\"International Journal of Thermophysics\",\"volume\":\"46 2\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Thermophysics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10765-024-03483-4\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermophysics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10765-024-03483-4","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
现代多参数状态方程(MP EOSs)能够精确计算流体在广泛温度和压力范围内的热力学性质。在饱和蒸汽和饱和液体密度之间,用mpeos计算的压力与密度等温线显示出几个振幅较大的振荡。这对大多数工程计算来说不是问题,因为等温线的这一部分被一条水平线代替了,这条水平线代表了汽相和液相的平衡混合物。然而,为了计算亚稳态的性质,用梯度理论建模相界面,以及流体混合物的某些模型,需要一个具有单个最大值和单个最小值(单个范德瓦尔斯环)的等温线。作为迈向精确的单环EOS的一步,我们提出了广义四参数立方(G4C) EOS。这四个参数是温度函数,在亚临界温度下可拟合为第二维里系数、饱和压力、液体密度和可压缩性,在超临界温度下可拟合为第二维里系数和压力导数。拟合数据来自丙烷的热力学性质公式(Lemmon et al.)。化学工程学报,2009)。G4C EOS提供了丙烷在气体、液体和超临界区域的热力学性质的表示,对于预期的应用来说,这是足够准确的。这个方程可以外推到高温。在85.5 K ~ 296 K之间,饱和液体的密度和压缩率的平均绝对相对偏差(AARD)分别为0.04%和0.25%,饱和蒸汽的密度和压缩率的平均绝对相对偏差(AARD)分别为0.31%和0.39%,饱和压力的平均绝对相对偏差为0.23%。未来需要改进的特征是低温下三阶和高阶维里系数的温度依赖性,液体区域的等温线曲率,超高压下的液体密度,以及临界区域。开发的G4C EOS成功地用于一个新的混合物模型(Hrubý Int J Thermophys 44:13 0,2023),以模拟以丙烷为低挥发成分的不对称混合物的体积行为和汽液平衡。
Quest for a Single van der Waals Loop: A Four-Parameter Cubic Equation of State Tailored to a Reference Formulation for Propane
Modern multiparameter equations of state (MP EOSs) enable accurate computation of thermodynamic properties of fluids in broad ranges of temperature and pressure. Between the saturated vapor and saturated liquid densities, a pressure vs. density isotherm computed with an MP EOS exhibits several oscillations with large amplitudes. This is not a problem for most engineering computations, because this portion of isotherm is replaced with a horizontal line, representing an equilibrium mixture of the vapor and liquid phases. However, for computing properties in metastable states, modeling phase interfaces with gradient theory, and certain models of fluid mixtures, an isotherm with a single maximum and a single minimum (single van der Waals loop) is needed. As a step toward an accurate, single-loop EOS, we propose a generalized four-parameter cubic (G4C) EOS. The four parameters are temperature functions which are fitted, at subcritical temperatures, to the second virial coefficient, saturation pressure, liquid density and compressibility, and, in the supercritical region, to the second virial coefficient and derivatives of pressure. Fitted data were generated from thermodynamic property formulation for propane (Lemmon et al. J Chem Eng Data 54:3141, 2009). The G4C EOS provides a representation of thermodynamic properties of propane in the gaseous, liquid, and supercritical regions, which is sufficiently accurate for the intended applications. The equation can be extrapolated to high temperatures. Between 85.5 K and 296 K, the density and compressibility of the saturated liquid are represented with an average absolute relative deviation (AARD) of, respectively, 0.04 and 0.25 percent, the density and compressibility of saturated vapor show AARD of 0.31 and 0.39 percent, and the saturation pressure deviates by 0.23 percent. Features to be improved in future are temperature dependencies of the third- and higher-order virial coefficients at low temperatures, the curvature of isotherms in the liquid region, liquid density at very high pressures, and the critical region. Developed G4C EOS was successfully used in a new mixture model (Hrubý Int J Thermophys 44:130, 2023) to model volumetric behavior and vapor–liquid equilibrium in asymmetric mixtures with propane as a low-volatile component.
期刊介绍:
International Journal of Thermophysics serves as an international medium for the publication of papers in thermophysics, assisting both generators and users of thermophysical properties data. This distinguished journal publishes both experimental and theoretical papers on thermophysical properties of matter in the liquid, gaseous, and solid states (including soft matter, biofluids, and nano- and bio-materials), on instrumentation and techniques leading to their measurement, and on computer studies of model and related systems. Studies in all ranges of temperature, pressure, wavelength, and other relevant variables are included.