{"title":"自适应量子特征解的激发态挑战:子空间展开与状态平均策略","authors":"Harper R Grimsley and Francesco A Evangelista","doi":"10.1088/2058-9565/ad9fa2","DOIUrl":null,"url":null,"abstract":"The prediction of electronic structure for strongly correlated molecules represents a promising application for near-term quantum computers. Significant attention has been paid to ground state wavefunctions, but excited states of molecules are relatively unexplored. In this work, we consider the adaptive, problem-tailored (ADAPT)-variational quantum eigensolver (VQE) algorithm, a single-reference approach for obtaining ground states, and its state-averaged generalization for computing multiple states at once. We demonstrate for both rectangular and linear H4, as well as for BeH2, that this approach, which we call multistate-objective, Ritz-eigenspectral (MORE)-ADAPT-VQE, can make better use of small excitation manifolds than an analogous method based on a single-reference ADAPT-VQE calculation, q-sc-EOM. In particular, MORE-ADAPT-VQE is able to accurately describe both avoided crossings and crossings between states of different symmetries. In addition to more accurate excited state energies, MORE-ADAPT-VQE can recover accurate transition dipole moments in situations where traditional ADAPT-VQE and q-sc-EOM struggle. These improvements suggest a promising direction toward the use of quantum computers for difficult excited state problems.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"9 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Challenging excited states from adaptive quantum eigensolvers: subspace expansions vs. state-averaged strategies\",\"authors\":\"Harper R Grimsley and Francesco A Evangelista\",\"doi\":\"10.1088/2058-9565/ad9fa2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The prediction of electronic structure for strongly correlated molecules represents a promising application for near-term quantum computers. Significant attention has been paid to ground state wavefunctions, but excited states of molecules are relatively unexplored. In this work, we consider the adaptive, problem-tailored (ADAPT)-variational quantum eigensolver (VQE) algorithm, a single-reference approach for obtaining ground states, and its state-averaged generalization for computing multiple states at once. We demonstrate for both rectangular and linear H4, as well as for BeH2, that this approach, which we call multistate-objective, Ritz-eigenspectral (MORE)-ADAPT-VQE, can make better use of small excitation manifolds than an analogous method based on a single-reference ADAPT-VQE calculation, q-sc-EOM. In particular, MORE-ADAPT-VQE is able to accurately describe both avoided crossings and crossings between states of different symmetries. In addition to more accurate excited state energies, MORE-ADAPT-VQE can recover accurate transition dipole moments in situations where traditional ADAPT-VQE and q-sc-EOM struggle. These improvements suggest a promising direction toward the use of quantum computers for difficult excited state problems.\",\"PeriodicalId\":20821,\"journal\":{\"name\":\"Quantum Science and Technology\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Science and Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/2058-9565/ad9fa2\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2058-9565/ad9fa2","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Challenging excited states from adaptive quantum eigensolvers: subspace expansions vs. state-averaged strategies
The prediction of electronic structure for strongly correlated molecules represents a promising application for near-term quantum computers. Significant attention has been paid to ground state wavefunctions, but excited states of molecules are relatively unexplored. In this work, we consider the adaptive, problem-tailored (ADAPT)-variational quantum eigensolver (VQE) algorithm, a single-reference approach for obtaining ground states, and its state-averaged generalization for computing multiple states at once. We demonstrate for both rectangular and linear H4, as well as for BeH2, that this approach, which we call multistate-objective, Ritz-eigenspectral (MORE)-ADAPT-VQE, can make better use of small excitation manifolds than an analogous method based on a single-reference ADAPT-VQE calculation, q-sc-EOM. In particular, MORE-ADAPT-VQE is able to accurately describe both avoided crossings and crossings between states of different symmetries. In addition to more accurate excited state energies, MORE-ADAPT-VQE can recover accurate transition dipole moments in situations where traditional ADAPT-VQE and q-sc-EOM struggle. These improvements suggest a promising direction toward the use of quantum computers for difficult excited state problems.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.