Manhua Luo, Hailong Li, Gang Li, Wei Wang, Shengchao Yu, Qian Ma, Yan Zheng
{"title":"坡折潮滩中蒸发和含水层对地下水动态和溶质运移的影响","authors":"Manhua Luo, Hailong Li, Gang Li, Wei Wang, Shengchao Yu, Qian Ma, Yan Zheng","doi":"10.1029/2024wr038231","DOIUrl":null,"url":null,"abstract":"Coastal groundwater dynamics and solute transport were influenced by multiple factors including aquitards, tides, evaporation, and slope breaks in coastal aquifers. However, quantification of the impacts of these factors on groundwater flow and salinity distribution remains a challenge. In this study, both field observations and numerical modeling were applied to investigate hydraulic heads and groundwater salinity in a tidal flat with large-scale seepage faces at Laizhou Bay, China. Results showed that seepage-face evaporation increased groundwater salinity landward and promoted groundwater and salt exchange within the intertidal zone significantly in comparison to the case without evaporation. Seawater infiltrated the aquifer on the left of the slope break and discharged on the right, forming a groundwater circulation cell, which notably influenced leakage flow between unconfined and confined aquifers through the aquitard. The aquitard prevented approximately 85% of inland freshwater discharge near the slope break, resulting in the formation of two atypical freshwater discharge tubes in the upper and middle intertidal zones. Two additional groundwater circulation cells developed in the lower intertidal zone due to the spring-neap tidal cycle. The outflow and inflow fluxes over a spring-neap tidal cycle were numerically estimated to be 1.46 and 1.27 m<sup>2</sup>/d, respectively, with evaporation accounting for 45% of the outflow flux. These findings provide significant insights for further investigations on groundwater dynamics and solute transport in multi-layered coastal aquifers, and have strong implications for biogeochemical processes within the intertidal zone.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":"27 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Influences of Evaporation and Aquitard on Groundwater Dynamics and Solute Transport in a Tidal Flat With a Slope Break\",\"authors\":\"Manhua Luo, Hailong Li, Gang Li, Wei Wang, Shengchao Yu, Qian Ma, Yan Zheng\",\"doi\":\"10.1029/2024wr038231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Coastal groundwater dynamics and solute transport were influenced by multiple factors including aquitards, tides, evaporation, and slope breaks in coastal aquifers. However, quantification of the impacts of these factors on groundwater flow and salinity distribution remains a challenge. In this study, both field observations and numerical modeling were applied to investigate hydraulic heads and groundwater salinity in a tidal flat with large-scale seepage faces at Laizhou Bay, China. Results showed that seepage-face evaporation increased groundwater salinity landward and promoted groundwater and salt exchange within the intertidal zone significantly in comparison to the case without evaporation. Seawater infiltrated the aquifer on the left of the slope break and discharged on the right, forming a groundwater circulation cell, which notably influenced leakage flow between unconfined and confined aquifers through the aquitard. The aquitard prevented approximately 85% of inland freshwater discharge near the slope break, resulting in the formation of two atypical freshwater discharge tubes in the upper and middle intertidal zones. Two additional groundwater circulation cells developed in the lower intertidal zone due to the spring-neap tidal cycle. The outflow and inflow fluxes over a spring-neap tidal cycle were numerically estimated to be 1.46 and 1.27 m<sup>2</sup>/d, respectively, with evaporation accounting for 45% of the outflow flux. These findings provide significant insights for further investigations on groundwater dynamics and solute transport in multi-layered coastal aquifers, and have strong implications for biogeochemical processes within the intertidal zone.\",\"PeriodicalId\":23799,\"journal\":{\"name\":\"Water Resources Research\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Resources Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1029/2024wr038231\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2024wr038231","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
The Influences of Evaporation and Aquitard on Groundwater Dynamics and Solute Transport in a Tidal Flat With a Slope Break
Coastal groundwater dynamics and solute transport were influenced by multiple factors including aquitards, tides, evaporation, and slope breaks in coastal aquifers. However, quantification of the impacts of these factors on groundwater flow and salinity distribution remains a challenge. In this study, both field observations and numerical modeling were applied to investigate hydraulic heads and groundwater salinity in a tidal flat with large-scale seepage faces at Laizhou Bay, China. Results showed that seepage-face evaporation increased groundwater salinity landward and promoted groundwater and salt exchange within the intertidal zone significantly in comparison to the case without evaporation. Seawater infiltrated the aquifer on the left of the slope break and discharged on the right, forming a groundwater circulation cell, which notably influenced leakage flow between unconfined and confined aquifers through the aquitard. The aquitard prevented approximately 85% of inland freshwater discharge near the slope break, resulting in the formation of two atypical freshwater discharge tubes in the upper and middle intertidal zones. Two additional groundwater circulation cells developed in the lower intertidal zone due to the spring-neap tidal cycle. The outflow and inflow fluxes over a spring-neap tidal cycle were numerically estimated to be 1.46 and 1.27 m2/d, respectively, with evaporation accounting for 45% of the outflow flux. These findings provide significant insights for further investigations on groundwater dynamics and solute transport in multi-layered coastal aquifers, and have strong implications for biogeochemical processes within the intertidal zone.
期刊介绍:
Water Resources Research (WRR) is an interdisciplinary journal that focuses on hydrology and water resources. It publishes original research in the natural and social sciences of water. It emphasizes the role of water in the Earth system, including physical, chemical, biological, and ecological processes in water resources research and management, including social, policy, and public health implications. It encompasses observational, experimental, theoretical, analytical, numerical, and data-driven approaches that advance the science of water and its management. Submissions are evaluated for their novelty, accuracy, significance, and broader implications of the findings.