DEMO-FNS托卡马克氚燃料循环系统氢同位素库存的计算方法

IF 0.3 4区 物理与天体物理 Q4 PHYSICS, NUCLEAR Physics of Atomic Nuclei Pub Date : 2025-01-11 DOI:10.1134/S1063778824070019
S. S. Ananyev, B. V. Ivanov
{"title":"DEMO-FNS托卡马克氚燃料循环系统氢同位素库存的计算方法","authors":"S. S. Ananyev,&nbsp;B. V. Ivanov","doi":"10.1134/S1063778824070019","DOIUrl":null,"url":null,"abstract":"<p>The applied technologies for handling tritium and the efficiency of its use in the fuel cycle of a fusion facility affect the start-up tritium inventory, the possibility of tritium self-sufficiency, etc. These parameters largely determine the cost of the facility, its efficiency, and safety during operation. Formation of the conceptual configuration of the fuel cycle, calculation of the tritium inventory in its systems, and determination of the scope for further development are important problems in facility design. In order to calculate the flows of fuel components and tritium inventory in the fuel cycle (FC) of a tokamak-based fusion neutron source, the FC-FNS code developed at the Kurchatov Institute has been used since 2013. It implements the possibility of calculating the number of hydrogen isotopes contained in different FC systems. The article describes the current state of research on modeling the flow of fuel components in FC systems of the tokamak with a tritium-breeding blanket, presents simplified schemes of FC systems, and describes the principles of their operation and the methodology for calculating the inventory of hydrogen isotopes in them. It is substantiated that the number of fuel components in the facility will be primarily determined by fuel cycle technologies, which, in turn, depend on plasma parameters and scenarios of facility operation. It is shown that, for the DEMO-FNS project with a fusion power of 40 MW, which corresponds to the combustion of 7 × 10<sup>–5</sup> g/s of tritium, the startup tritium inventory will be 400–430 g with a circulating fuel flow through the facility chamber of up to 0.1 g/s. Increasing fuel flows through the injection, hydrogen isotope separation, and some other DEMO-FNS systems, if convective edge-localized modes (ELMs) are taken into account, will lead to an increase in the operational tritium inventory in the fuel cycle up to 500 g. If there is a tritium-breeding blanket in the facility, tritium inventory in it (including the long-term storage) will be no more than 800 g.</p>","PeriodicalId":728,"journal":{"name":"Physics of Atomic Nuclei","volume":"87 7","pages":"958 - 978"},"PeriodicalIF":0.3000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Methodology for Calculating the Hydrogen Isotope Inventory in Tritium Fuel Cycle Systems of the DEMO-FNS Tokamak\",\"authors\":\"S. S. Ananyev,&nbsp;B. V. Ivanov\",\"doi\":\"10.1134/S1063778824070019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The applied technologies for handling tritium and the efficiency of its use in the fuel cycle of a fusion facility affect the start-up tritium inventory, the possibility of tritium self-sufficiency, etc. These parameters largely determine the cost of the facility, its efficiency, and safety during operation. Formation of the conceptual configuration of the fuel cycle, calculation of the tritium inventory in its systems, and determination of the scope for further development are important problems in facility design. In order to calculate the flows of fuel components and tritium inventory in the fuel cycle (FC) of a tokamak-based fusion neutron source, the FC-FNS code developed at the Kurchatov Institute has been used since 2013. It implements the possibility of calculating the number of hydrogen isotopes contained in different FC systems. The article describes the current state of research on modeling the flow of fuel components in FC systems of the tokamak with a tritium-breeding blanket, presents simplified schemes of FC systems, and describes the principles of their operation and the methodology for calculating the inventory of hydrogen isotopes in them. It is substantiated that the number of fuel components in the facility will be primarily determined by fuel cycle technologies, which, in turn, depend on plasma parameters and scenarios of facility operation. It is shown that, for the DEMO-FNS project with a fusion power of 40 MW, which corresponds to the combustion of 7 × 10<sup>–5</sup> g/s of tritium, the startup tritium inventory will be 400–430 g with a circulating fuel flow through the facility chamber of up to 0.1 g/s. Increasing fuel flows through the injection, hydrogen isotope separation, and some other DEMO-FNS systems, if convective edge-localized modes (ELMs) are taken into account, will lead to an increase in the operational tritium inventory in the fuel cycle up to 500 g. If there is a tritium-breeding blanket in the facility, tritium inventory in it (including the long-term storage) will be no more than 800 g.</p>\",\"PeriodicalId\":728,\"journal\":{\"name\":\"Physics of Atomic Nuclei\",\"volume\":\"87 7\",\"pages\":\"958 - 978\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2025-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of Atomic Nuclei\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1063778824070019\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Atomic Nuclei","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063778824070019","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

处理氚的应用技术及其在聚变设施燃料循环中的使用效率影响着启动氚库存、氚自给自足的可能性等。这些参数在很大程度上决定了设施的成本、效率和运行期间的安全性。形成燃料循环的概念结构,计算其系统中的氚库存,以及确定进一步发展的范围是设施设计中的重要问题。为了计算基于托卡马克的聚变中子源燃料循环(FC)中的燃料组分流量和氚库存,库尔恰托夫研究所自2013年以来一直在使用FC- fns代码。它实现了计算不同FC体系中所含氢同位素数量的可能性。本文介绍了用氚增殖包层模拟托卡马克FC系统燃料组分流动的研究现状,提出了FC系统的简化方案,并介绍了FC系统的工作原理和计算FC系统中氢同位素库存量的方法。事实证明,设施中燃料成分的数量将主要由燃料循环技术决定,而燃料循环技术又取决于等离子体参数和设施运行情况。结果表明,对于聚变功率为40 MW的DEMO-FNS项目,对应于7 × 10-5 g/s氚的燃烧,启动氚库存将为400-430 g,通过设施室的循环燃料流量高达0.1 g/s。如果考虑到对流边缘局域模式(elm),通过喷射、氢同位素分离和其他DEMO-FNS系统增加的燃料流量将导致燃料循环中可操作的氚库存增加至500 g。如果设施内有氚繁殖毯,其氚库存(包括长期储存)不超过800克。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Methodology for Calculating the Hydrogen Isotope Inventory in Tritium Fuel Cycle Systems of the DEMO-FNS Tokamak

The applied technologies for handling tritium and the efficiency of its use in the fuel cycle of a fusion facility affect the start-up tritium inventory, the possibility of tritium self-sufficiency, etc. These parameters largely determine the cost of the facility, its efficiency, and safety during operation. Formation of the conceptual configuration of the fuel cycle, calculation of the tritium inventory in its systems, and determination of the scope for further development are important problems in facility design. In order to calculate the flows of fuel components and tritium inventory in the fuel cycle (FC) of a tokamak-based fusion neutron source, the FC-FNS code developed at the Kurchatov Institute has been used since 2013. It implements the possibility of calculating the number of hydrogen isotopes contained in different FC systems. The article describes the current state of research on modeling the flow of fuel components in FC systems of the tokamak with a tritium-breeding blanket, presents simplified schemes of FC systems, and describes the principles of their operation and the methodology for calculating the inventory of hydrogen isotopes in them. It is substantiated that the number of fuel components in the facility will be primarily determined by fuel cycle technologies, which, in turn, depend on plasma parameters and scenarios of facility operation. It is shown that, for the DEMO-FNS project with a fusion power of 40 MW, which corresponds to the combustion of 7 × 10–5 g/s of tritium, the startup tritium inventory will be 400–430 g with a circulating fuel flow through the facility chamber of up to 0.1 g/s. Increasing fuel flows through the injection, hydrogen isotope separation, and some other DEMO-FNS systems, if convective edge-localized modes (ELMs) are taken into account, will lead to an increase in the operational tritium inventory in the fuel cycle up to 500 g. If there is a tritium-breeding blanket in the facility, tritium inventory in it (including the long-term storage) will be no more than 800 g.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics of Atomic Nuclei
Physics of Atomic Nuclei 物理-物理:核物理
CiteScore
0.60
自引率
25.00%
发文量
56
审稿时长
3-6 weeks
期刊介绍: Physics of Atomic Nuclei is a journal that covers experimental and theoretical studies of nuclear physics: nuclear structure, spectra, and properties; radiation, fission, and nuclear reactions induced by photons, leptons, hadrons, and nuclei; fundamental interactions and symmetries; hadrons (with light, strange, charm, and bottom quarks); particle collisions at high and superhigh energies; gauge and unified quantum field theories, quark models, supersymmetry and supergravity, astrophysics and cosmology.
期刊最新文献
An Assessment of the Influence of the Technogenic Acoustic Background on γ -Spectrometer Readings during Registration of γ-Radiation Spectra Methodology of Nuclear Research Reactor Conversion at the Decommissioning Stage Real-Time Performance Monitoring of Digital X-Ray Diagnostic Equipment Prior to Patient Admission Statistical Approximations in Studying the Interaction of Broadband Laser Radiation in a Complex Environment Method for Calculating Spatial Resolution of Heavy Ion Beam Probing for the T-15MD Tokamak
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1