Naeem Ahmed, Ling Xin Yong, Jason Hsiao Chun Yang, Kim S. Siow
{"title":"非热等离子体技术及其对等离子农业粮食作物种子类型的潜在影响","authors":"Naeem Ahmed, Ling Xin Yong, Jason Hsiao Chun Yang, Kim S. Siow","doi":"10.1007/s11090-024-10534-z","DOIUrl":null,"url":null,"abstract":"<div><p>Non-thermal plasma (NTP) is explored as a sustainable technology to treat and enhance seed germination and growth of major food crops to address food security issues worldwide. This review would provide an overview on the latest advancement of NTP applications for food crop seeds, considering the different food crop groups, and summarizes the mechanism of how NTP improves germination and growth. Results vary based on seed type, plasma setup, and source, such as direct glow plasma or plasma-activated water (PAW). In direct glow plasma, reactive species induce morphological changes by bombarding seed surfaces with ions and radicals. PAW, on the other hand, promotes seed germination through reactive oxygen and nitrogen species (RONS) present in the water. Regardless of treatment sources, RONS ions also play a crucial role in modifying seed morphology, activating antioxidant enzymes, and influencing hormonal pathways to stimulate growth processes while suppressing inhibitory signals. NTP treatment shows promising potential in plasma agriculture, but excessive exposure may adversely affect plant growth. Additionally, NTP induces epigenetic changes, such as DNA methylation, which regulates stress-related genes, further supporting seed performance. Despite these advancements, critical knowledge gaps remain, including the need for standardized plasma energy evaluations, long-term yield impact, and safety validations for food produced from plasma-treated seeds. Future research must address these aspects to ensure the widespread, sustainable application of NTP technology in agriculture.</p></div>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":"45 1","pages":"421 - 462"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Review of Non-Thermal Plasma Technology and Its Potential Impact on Food Crop Seed Types in Plasma Agriculture\",\"authors\":\"Naeem Ahmed, Ling Xin Yong, Jason Hsiao Chun Yang, Kim S. Siow\",\"doi\":\"10.1007/s11090-024-10534-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Non-thermal plasma (NTP) is explored as a sustainable technology to treat and enhance seed germination and growth of major food crops to address food security issues worldwide. This review would provide an overview on the latest advancement of NTP applications for food crop seeds, considering the different food crop groups, and summarizes the mechanism of how NTP improves germination and growth. Results vary based on seed type, plasma setup, and source, such as direct glow plasma or plasma-activated water (PAW). In direct glow plasma, reactive species induce morphological changes by bombarding seed surfaces with ions and radicals. PAW, on the other hand, promotes seed germination through reactive oxygen and nitrogen species (RONS) present in the water. Regardless of treatment sources, RONS ions also play a crucial role in modifying seed morphology, activating antioxidant enzymes, and influencing hormonal pathways to stimulate growth processes while suppressing inhibitory signals. NTP treatment shows promising potential in plasma agriculture, but excessive exposure may adversely affect plant growth. Additionally, NTP induces epigenetic changes, such as DNA methylation, which regulates stress-related genes, further supporting seed performance. Despite these advancements, critical knowledge gaps remain, including the need for standardized plasma energy evaluations, long-term yield impact, and safety validations for food produced from plasma-treated seeds. Future research must address these aspects to ensure the widespread, sustainable application of NTP technology in agriculture.</p></div>\",\"PeriodicalId\":734,\"journal\":{\"name\":\"Plasma Chemistry and Plasma Processing\",\"volume\":\"45 1\",\"pages\":\"421 - 462\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasma Chemistry and Plasma Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11090-024-10534-z\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Chemistry and Plasma Processing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11090-024-10534-z","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Review of Non-Thermal Plasma Technology and Its Potential Impact on Food Crop Seed Types in Plasma Agriculture
Non-thermal plasma (NTP) is explored as a sustainable technology to treat and enhance seed germination and growth of major food crops to address food security issues worldwide. This review would provide an overview on the latest advancement of NTP applications for food crop seeds, considering the different food crop groups, and summarizes the mechanism of how NTP improves germination and growth. Results vary based on seed type, plasma setup, and source, such as direct glow plasma or plasma-activated water (PAW). In direct glow plasma, reactive species induce morphological changes by bombarding seed surfaces with ions and radicals. PAW, on the other hand, promotes seed germination through reactive oxygen and nitrogen species (RONS) present in the water. Regardless of treatment sources, RONS ions also play a crucial role in modifying seed morphology, activating antioxidant enzymes, and influencing hormonal pathways to stimulate growth processes while suppressing inhibitory signals. NTP treatment shows promising potential in plasma agriculture, but excessive exposure may adversely affect plant growth. Additionally, NTP induces epigenetic changes, such as DNA methylation, which regulates stress-related genes, further supporting seed performance. Despite these advancements, critical knowledge gaps remain, including the need for standardized plasma energy evaluations, long-term yield impact, and safety validations for food produced from plasma-treated seeds. Future research must address these aspects to ensure the widespread, sustainable application of NTP technology in agriculture.
期刊介绍:
Publishing original papers on fundamental and applied research in plasma chemistry and plasma processing, the scope of this journal includes processing plasmas ranging from non-thermal plasmas to thermal plasmas, and fundamental plasma studies as well as studies of specific plasma applications. Such applications include but are not limited to plasma catalysis, environmental processing including treatment of liquids and gases, biological applications of plasmas including plasma medicine and agriculture, surface modification and deposition, powder and nanostructure synthesis, energy applications including plasma combustion and reforming, resource recovery, coupling of plasmas and electrochemistry, and plasma etching. Studies of chemical kinetics in plasmas, and the interactions of plasmas with surfaces are also solicited. It is essential that submissions include substantial consideration of the role of the plasma, for example, the relevant plasma chemistry, plasma physics or plasma–surface interactions; manuscripts that consider solely the properties of materials or substances processed using a plasma are not within the journal’s scope.