Asad ur Rehman Khan, Muhammad Ramzan, Sajawal ur Rehman Khan, Islem Abid, Faisal Saud Binhuday, Muhammad Abdul Majid, Abdul Rehman, Abhishek Singh
{"title":"用于光催化染料降解和储能应用的高效Y3+掺杂ZnO纳米颗粒的溶胶-凝胶合成、表征","authors":"Asad ur Rehman Khan, Muhammad Ramzan, Sajawal ur Rehman Khan, Islem Abid, Faisal Saud Binhuday, Muhammad Abdul Majid, Abdul Rehman, Abhishek Singh","doi":"10.1007/s10971-024-06597-1","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we report on the crystallographic, optical, and electrochemical properties of Yttrium (Y³⁺) doped ZnO nanoparticles synthesized by using the sol-gel method. The incorporation of Y³⁺ ions resulted in a significant reduction in the optical bandgap, from 3.26 eV for pure ZnO to 2.67 eV for Y-C nanoparticles, improving their light absorption capacity under visible light. X-ray diffraction analysis revealed a hexagonal wurtzite structure, showing an increase in crystallite size with the incorporation of Y³⁺ doping. This was accompanied by superior photocatalytic performance, where Y-B (4% Y³⁺) doped ZnO nanoparticles exhibited remarkable 97% degradation efficiency for methylene blue (MB), 4.4 times greater than that of undoped ZnO. Electrochemical analysis revealed an improvement in specific capacitance, ranging from 20.56 F/g to 75.88 F/g at various scan rates, highlighting the potential of Y-ZnO as a material for energy storage applications. These enhancements can be attributed to the unique influence of Y³⁺ ions, which induce lattice expansion and promote charge transfer efficiency. The synthesized Y<sup>3+</sup> doped ZnO nanoparticles can be potential candidates for industrial applications such as environmental remediation through photocatalysis, and energy storage devices like supercapacitors.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"113 1","pages":"180 - 196"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sol-gel synthesis, characterizations of efficient Y3+ doped ZnO nanoparticles for photocatalytic dye degradation and energy storage applications\",\"authors\":\"Asad ur Rehman Khan, Muhammad Ramzan, Sajawal ur Rehman Khan, Islem Abid, Faisal Saud Binhuday, Muhammad Abdul Majid, Abdul Rehman, Abhishek Singh\",\"doi\":\"10.1007/s10971-024-06597-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, we report on the crystallographic, optical, and electrochemical properties of Yttrium (Y³⁺) doped ZnO nanoparticles synthesized by using the sol-gel method. The incorporation of Y³⁺ ions resulted in a significant reduction in the optical bandgap, from 3.26 eV for pure ZnO to 2.67 eV for Y-C nanoparticles, improving their light absorption capacity under visible light. X-ray diffraction analysis revealed a hexagonal wurtzite structure, showing an increase in crystallite size with the incorporation of Y³⁺ doping. This was accompanied by superior photocatalytic performance, where Y-B (4% Y³⁺) doped ZnO nanoparticles exhibited remarkable 97% degradation efficiency for methylene blue (MB), 4.4 times greater than that of undoped ZnO. Electrochemical analysis revealed an improvement in specific capacitance, ranging from 20.56 F/g to 75.88 F/g at various scan rates, highlighting the potential of Y-ZnO as a material for energy storage applications. These enhancements can be attributed to the unique influence of Y³⁺ ions, which induce lattice expansion and promote charge transfer efficiency. The synthesized Y<sup>3+</sup> doped ZnO nanoparticles can be potential candidates for industrial applications such as environmental remediation through photocatalysis, and energy storage devices like supercapacitors.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":664,\"journal\":{\"name\":\"Journal of Sol-Gel Science and Technology\",\"volume\":\"113 1\",\"pages\":\"180 - 196\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sol-Gel Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10971-024-06597-1\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sol-Gel Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10971-024-06597-1","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
摘要
在这项研究中,我们报道了用溶胶-凝胶法合成的钇(Y³)掺杂ZnO纳米粒子的晶体学、光学和电化学性能。Y³+离子的掺入导致光学带隙显著减小,从纯ZnO的3.26 eV降至Y- c纳米颗粒的2.67 eV,提高了它们在可见光下的光吸收能力。x射线衍射分析显示为六方纤锌矿结构,Y³⁺掺杂后晶体尺寸增大。这还伴随着优异的光催化性能,其中Y- b (4% Y³)掺杂的ZnO纳米颗粒对亚甲基蓝(MB)的降解效率达到97%,是未掺杂ZnO的4.4倍。电化学分析显示,在不同扫描速率下,Y-ZnO的比电容从20.56 F/g到75.88 F/g不等,这突出了Y-ZnO作为储能材料的潜力。这些增强可以归因于Y³+离子的独特影响,它可以诱导晶格膨胀并提高电荷转移效率。合成的Y3+掺杂ZnO纳米颗粒可以作为工业应用的潜在候选物,如通过光催化进行环境修复,以及超级电容器等储能器件。图形抽象
Sol-gel synthesis, characterizations of efficient Y3+ doped ZnO nanoparticles for photocatalytic dye degradation and energy storage applications
In this study, we report on the crystallographic, optical, and electrochemical properties of Yttrium (Y³⁺) doped ZnO nanoparticles synthesized by using the sol-gel method. The incorporation of Y³⁺ ions resulted in a significant reduction in the optical bandgap, from 3.26 eV for pure ZnO to 2.67 eV for Y-C nanoparticles, improving their light absorption capacity under visible light. X-ray diffraction analysis revealed a hexagonal wurtzite structure, showing an increase in crystallite size with the incorporation of Y³⁺ doping. This was accompanied by superior photocatalytic performance, where Y-B (4% Y³⁺) doped ZnO nanoparticles exhibited remarkable 97% degradation efficiency for methylene blue (MB), 4.4 times greater than that of undoped ZnO. Electrochemical analysis revealed an improvement in specific capacitance, ranging from 20.56 F/g to 75.88 F/g at various scan rates, highlighting the potential of Y-ZnO as a material for energy storage applications. These enhancements can be attributed to the unique influence of Y³⁺ ions, which induce lattice expansion and promote charge transfer efficiency. The synthesized Y3+ doped ZnO nanoparticles can be potential candidates for industrial applications such as environmental remediation through photocatalysis, and energy storage devices like supercapacitors.
期刊介绍:
The primary objective of the Journal of Sol-Gel Science and Technology (JSST), the official journal of the International Sol-Gel Society, is to provide an international forum for the dissemination of scientific, technological, and general knowledge about materials processed by chemical nanotechnologies known as the "sol-gel" process. The materials of interest include gels, gel-derived glasses, ceramics in form of nano- and micro-powders, bulk, fibres, thin films and coatings as well as more recent materials such as hybrid organic-inorganic materials and composites. Such materials exhibit a wide range of optical, electronic, magnetic, chemical, environmental, and biomedical properties and functionalities. Methods for producing sol-gel-derived materials and the industrial uses of these materials are also of great interest.