Marta Pilar Ortiz-Moriano, Eva Garcia-Vazquez, Gonzalo Machado-Schiaffino
{"title":"滤食性物种的基因作为监测微塑料影响的潜在工具包。","authors":"Marta Pilar Ortiz-Moriano, Eva Garcia-Vazquez, Gonzalo Machado-Schiaffino","doi":"10.1016/j.aquatox.2024.107234","DOIUrl":null,"url":null,"abstract":"<div><div>Microplastics (MPs) are ubiquitous in the marine environment and impact organisms at multiple levels. Understanding their actual effects on wild populations is urgently needed. This study develops a toolkit to monitor changes in gene expression induced by MPs in natural environments, focusing on filter-feeding and bioindicator species from diverse ecological and taxonomic groups. Six candidate genes —Caspase, HSP70, HSP90, PK, SOD, and VTG— and nine filter-feeding species —two branchiopods, one copepod, five bivalves and one fish— were selected based on differential expression in response to MPs exposure (mainly the widely used polystyrene and polyethylene polymers) reported in over 30 publications. Some genes are particularly determinant, such as HSP70 and HSP90 (key to managing a wide range of stressors) and SOD (critical for addressing oxidative stress), as they are more directly related to stress. PK is related to carbohydrate metabolism (alterations in energy metabolism); VTG is associated with reproductive problems; Caspase mediates in apoptosis. Each gene in the toolkit plays a role depending on the type of stress assessed, and their combination provides a comprehensive understanding of the impacts of MPs. Differences in gene expressions between species and the exposure thresholds were found. These genes were examined in various scenarios with different types, concentrations, and sizes of MPs, alone or with other stressors. The toolkit offers significant advantages, allowing a comprehensive study of the impact of MPs and focusing on filtering bioindicator species, thus enabling pollution assessment and long-term monitoring. It will outperform traditional methods like tissue counts of MPs where only physical damage is visible, providing a deeper understanding. To our knowledge, this is the first toolkit of its kind.</div></div>","PeriodicalId":248,"journal":{"name":"Aquatic Toxicology","volume":"279 ","pages":"Article 107234"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genes of filter-feeding species as a potential toolkit for monitoring microplastic impacts\",\"authors\":\"Marta Pilar Ortiz-Moriano, Eva Garcia-Vazquez, Gonzalo Machado-Schiaffino\",\"doi\":\"10.1016/j.aquatox.2024.107234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Microplastics (MPs) are ubiquitous in the marine environment and impact organisms at multiple levels. Understanding their actual effects on wild populations is urgently needed. This study develops a toolkit to monitor changes in gene expression induced by MPs in natural environments, focusing on filter-feeding and bioindicator species from diverse ecological and taxonomic groups. Six candidate genes —Caspase, HSP70, HSP90, PK, SOD, and VTG— and nine filter-feeding species —two branchiopods, one copepod, five bivalves and one fish— were selected based on differential expression in response to MPs exposure (mainly the widely used polystyrene and polyethylene polymers) reported in over 30 publications. Some genes are particularly determinant, such as HSP70 and HSP90 (key to managing a wide range of stressors) and SOD (critical for addressing oxidative stress), as they are more directly related to stress. PK is related to carbohydrate metabolism (alterations in energy metabolism); VTG is associated with reproductive problems; Caspase mediates in apoptosis. Each gene in the toolkit plays a role depending on the type of stress assessed, and their combination provides a comprehensive understanding of the impacts of MPs. Differences in gene expressions between species and the exposure thresholds were found. These genes were examined in various scenarios with different types, concentrations, and sizes of MPs, alone or with other stressors. The toolkit offers significant advantages, allowing a comprehensive study of the impact of MPs and focusing on filtering bioindicator species, thus enabling pollution assessment and long-term monitoring. It will outperform traditional methods like tissue counts of MPs where only physical damage is visible, providing a deeper understanding. To our knowledge, this is the first toolkit of its kind.</div></div>\",\"PeriodicalId\":248,\"journal\":{\"name\":\"Aquatic Toxicology\",\"volume\":\"279 \",\"pages\":\"Article 107234\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aquatic Toxicology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166445X2400403X\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Toxicology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166445X2400403X","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
Genes of filter-feeding species as a potential toolkit for monitoring microplastic impacts
Microplastics (MPs) are ubiquitous in the marine environment and impact organisms at multiple levels. Understanding their actual effects on wild populations is urgently needed. This study develops a toolkit to monitor changes in gene expression induced by MPs in natural environments, focusing on filter-feeding and bioindicator species from diverse ecological and taxonomic groups. Six candidate genes —Caspase, HSP70, HSP90, PK, SOD, and VTG— and nine filter-feeding species —two branchiopods, one copepod, five bivalves and one fish— were selected based on differential expression in response to MPs exposure (mainly the widely used polystyrene and polyethylene polymers) reported in over 30 publications. Some genes are particularly determinant, such as HSP70 and HSP90 (key to managing a wide range of stressors) and SOD (critical for addressing oxidative stress), as they are more directly related to stress. PK is related to carbohydrate metabolism (alterations in energy metabolism); VTG is associated with reproductive problems; Caspase mediates in apoptosis. Each gene in the toolkit plays a role depending on the type of stress assessed, and their combination provides a comprehensive understanding of the impacts of MPs. Differences in gene expressions between species and the exposure thresholds were found. These genes were examined in various scenarios with different types, concentrations, and sizes of MPs, alone or with other stressors. The toolkit offers significant advantages, allowing a comprehensive study of the impact of MPs and focusing on filtering bioindicator species, thus enabling pollution assessment and long-term monitoring. It will outperform traditional methods like tissue counts of MPs where only physical damage is visible, providing a deeper understanding. To our knowledge, this is the first toolkit of its kind.
期刊介绍:
Aquatic Toxicology publishes significant contributions that increase the understanding of the impact of harmful substances (including natural and synthetic chemicals) on aquatic organisms and ecosystems.
Aquatic Toxicology considers both laboratory and field studies with a focus on marine/ freshwater environments. We strive to attract high quality original scientific papers, critical reviews and expert opinion papers in the following areas: Effects of harmful substances on molecular, cellular, sub-organismal, organismal, population, community, and ecosystem level; Toxic Mechanisms; Genetic disturbances, transgenerational effects, behavioral and adaptive responses; Impacts of harmful substances on structure, function of and services provided by aquatic ecosystems; Mixture toxicity assessment; Statistical approaches to predict exposure to and hazards of contaminants
The journal also considers manuscripts in other areas, such as the development of innovative concepts, approaches, and methodologies, which promote the wider application of toxicological datasets to the protection of aquatic environments and inform ecological risk assessments and decision making by relevant authorities.