Johan Stanley, Lidia Molina-Millán, Chrys Wesdemiotis, Ron M A Heeren, Alexandra Zamboulis, Lidija Fras Zemljič, Dimitra A Lambropoulou, Dimitrios N Bikiaris
{"title":"聚呋喃酸乙烯/聚ε-己内酯嵌段共聚物的合成与表征","authors":"Johan Stanley, Lidia Molina-Millán, Chrys Wesdemiotis, Ron M A Heeren, Alexandra Zamboulis, Lidija Fras Zemljič, Dimitra A Lambropoulou, Dimitrios N Bikiaris","doi":"10.1021/jasms.4c00397","DOIUrl":null,"url":null,"abstract":"<p><p>Biobased poly(ethylene furanoate) (PEF)/poly(ε-caprolactone) (PCL) block copolymers have been synthesized using ring opening polymerization (ROP) of ε-caprolactone (ε-CL) in the presence of PEF in different mass ratios. An increase in intrinsic viscosity is observed for the block copolymers with higher ε-CL content due to the extension of their macromolecular chain. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MS) was employed to understand the composition and structure of the produced block copolymers. The MS analysis helped to confirm the formation of PEF-PCL copolymers in all cases. Furthermore, tandem mass spectrometry experiments were performed to analyze the intrinsic fragmentation mechanism of neat PEF and PCL (both linear and cyclic) and confirm the block structure and end-groups. Finally, nuclear magnetic resonance results confirmed the composition and microstructure of the block copolymers. The synthesized PEF-PCL block copolymers can be used as a replacement for petroleum derived plastics, especially in the field of food packaging.</p>","PeriodicalId":672,"journal":{"name":"Journal of the American Society for Mass Spectrometry","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and Characterization of Poly(ethylene furanoate)/Poly(ε-caprolactone) Block Copolymers.\",\"authors\":\"Johan Stanley, Lidia Molina-Millán, Chrys Wesdemiotis, Ron M A Heeren, Alexandra Zamboulis, Lidija Fras Zemljič, Dimitra A Lambropoulou, Dimitrios N Bikiaris\",\"doi\":\"10.1021/jasms.4c00397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Biobased poly(ethylene furanoate) (PEF)/poly(ε-caprolactone) (PCL) block copolymers have been synthesized using ring opening polymerization (ROP) of ε-caprolactone (ε-CL) in the presence of PEF in different mass ratios. An increase in intrinsic viscosity is observed for the block copolymers with higher ε-CL content due to the extension of their macromolecular chain. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MS) was employed to understand the composition and structure of the produced block copolymers. The MS analysis helped to confirm the formation of PEF-PCL copolymers in all cases. Furthermore, tandem mass spectrometry experiments were performed to analyze the intrinsic fragmentation mechanism of neat PEF and PCL (both linear and cyclic) and confirm the block structure and end-groups. Finally, nuclear magnetic resonance results confirmed the composition and microstructure of the block copolymers. The synthesized PEF-PCL block copolymers can be used as a replacement for petroleum derived plastics, especially in the field of food packaging.</p>\",\"PeriodicalId\":672,\"journal\":{\"name\":\"Journal of the American Society for Mass Spectrometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Society for Mass Spectrometry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/jasms.4c00397\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Society for Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jasms.4c00397","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Synthesis and Characterization of Poly(ethylene furanoate)/Poly(ε-caprolactone) Block Copolymers.
Biobased poly(ethylene furanoate) (PEF)/poly(ε-caprolactone) (PCL) block copolymers have been synthesized using ring opening polymerization (ROP) of ε-caprolactone (ε-CL) in the presence of PEF in different mass ratios. An increase in intrinsic viscosity is observed for the block copolymers with higher ε-CL content due to the extension of their macromolecular chain. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MS) was employed to understand the composition and structure of the produced block copolymers. The MS analysis helped to confirm the formation of PEF-PCL copolymers in all cases. Furthermore, tandem mass spectrometry experiments were performed to analyze the intrinsic fragmentation mechanism of neat PEF and PCL (both linear and cyclic) and confirm the block structure and end-groups. Finally, nuclear magnetic resonance results confirmed the composition and microstructure of the block copolymers. The synthesized PEF-PCL block copolymers can be used as a replacement for petroleum derived plastics, especially in the field of food packaging.
期刊介绍:
The Journal of the American Society for Mass Spectrometry presents research papers covering all aspects of mass spectrometry, incorporating coverage of fields of scientific inquiry in which mass spectrometry can play a role.
Comprehensive in scope, the journal publishes papers on both fundamentals and applications of mass spectrometry. Fundamental subjects include instrumentation principles, design, and demonstration, structures and chemical properties of gas-phase ions, studies of thermodynamic properties, ion spectroscopy, chemical kinetics, mechanisms of ionization, theories of ion fragmentation, cluster ions, and potential energy surfaces. In addition to full papers, the journal offers Communications, Application Notes, and Accounts and Perspectives