Diana Ortega-Cruz, Alberto Rabano, Bryan A Strange
{"title":"失忆性痴呆中灰质萎缩和白质高信号的神经病理学贡献。","authors":"Diana Ortega-Cruz, Alberto Rabano, Bryan A Strange","doi":"10.1186/s13195-024-01633-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Dementia patients commonly present multiple neuropathologies, worsening cognitive function, yet structural neuroimaging signatures of dementia have not been positioned in the context of combined pathology. In this study, we implemented an MRI voxel-based approach to explore combined and independent effects of dementia pathologies on grey and white matter structural changes.</p><p><strong>Methods: </strong>In 91 amnestic dementia patients with post-mortem brain donation, grey matter density and white matter hyperintensity (WMH) burdens were obtained from pre-mortem MRI and analyzed in relation to Alzheimer's, vascular, Lewy body, TDP-43, and hippocampal sclerosis (HS) pathologies. After exploring co-occurrence profiles of these pathologies, voxel-based morphometry was implemented to determine their joint and independent effects on grey matter loss. The impact of these pathologies on WMH burden was then evaluated both in spatial and quantitative combined analyses, using voxel-based and generalized linear models respectively.</p><p><strong>Results: </strong>86.8% of patients in this cohort presented more than one pathology. The combined structural effect of these pathologies was a focal impact on hippocampal grey matter atrophy, primarily driven by HS and Alzheimer's pathology (family-wise error corrected, p < 0.05), which also exhibited the strongest individual effects (uncorrected, p < 0.001). WMHs, predominant in middle and anterior cerebral portions, were most strongly associated with vascular (T = 2.47, p = 0.017) and tau pathologies (T = 2.09, p = 0.041).</p><p><strong>Conclusions: </strong>The mixed associations of these dementia neuroimaging hallmarks are relevant for the fine-tuning of diagnostic protocols and underscore the need for comprehensive pathology evaluations in the study of dementia phenotypes.</p>","PeriodicalId":7516,"journal":{"name":"Alzheimer's Research & Therapy","volume":"17 1","pages":"16"},"PeriodicalIF":7.9000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11714914/pdf/","citationCount":"0","resultStr":"{\"title\":\"Neuropathological contributions to grey matter atrophy and white matter hyperintensities in amnestic dementia.\",\"authors\":\"Diana Ortega-Cruz, Alberto Rabano, Bryan A Strange\",\"doi\":\"10.1186/s13195-024-01633-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Dementia patients commonly present multiple neuropathologies, worsening cognitive function, yet structural neuroimaging signatures of dementia have not been positioned in the context of combined pathology. In this study, we implemented an MRI voxel-based approach to explore combined and independent effects of dementia pathologies on grey and white matter structural changes.</p><p><strong>Methods: </strong>In 91 amnestic dementia patients with post-mortem brain donation, grey matter density and white matter hyperintensity (WMH) burdens were obtained from pre-mortem MRI and analyzed in relation to Alzheimer's, vascular, Lewy body, TDP-43, and hippocampal sclerosis (HS) pathologies. After exploring co-occurrence profiles of these pathologies, voxel-based morphometry was implemented to determine their joint and independent effects on grey matter loss. The impact of these pathologies on WMH burden was then evaluated both in spatial and quantitative combined analyses, using voxel-based and generalized linear models respectively.</p><p><strong>Results: </strong>86.8% of patients in this cohort presented more than one pathology. The combined structural effect of these pathologies was a focal impact on hippocampal grey matter atrophy, primarily driven by HS and Alzheimer's pathology (family-wise error corrected, p < 0.05), which also exhibited the strongest individual effects (uncorrected, p < 0.001). WMHs, predominant in middle and anterior cerebral portions, were most strongly associated with vascular (T = 2.47, p = 0.017) and tau pathologies (T = 2.09, p = 0.041).</p><p><strong>Conclusions: </strong>The mixed associations of these dementia neuroimaging hallmarks are relevant for the fine-tuning of diagnostic protocols and underscore the need for comprehensive pathology evaluations in the study of dementia phenotypes.</p>\",\"PeriodicalId\":7516,\"journal\":{\"name\":\"Alzheimer's Research & Therapy\",\"volume\":\"17 1\",\"pages\":\"16\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11714914/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Alzheimer's Research & Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13195-024-01633-2\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Alzheimer's Research & Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13195-024-01633-2","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Neuropathological contributions to grey matter atrophy and white matter hyperintensities in amnestic dementia.
Background: Dementia patients commonly present multiple neuropathologies, worsening cognitive function, yet structural neuroimaging signatures of dementia have not been positioned in the context of combined pathology. In this study, we implemented an MRI voxel-based approach to explore combined and independent effects of dementia pathologies on grey and white matter structural changes.
Methods: In 91 amnestic dementia patients with post-mortem brain donation, grey matter density and white matter hyperintensity (WMH) burdens were obtained from pre-mortem MRI and analyzed in relation to Alzheimer's, vascular, Lewy body, TDP-43, and hippocampal sclerosis (HS) pathologies. After exploring co-occurrence profiles of these pathologies, voxel-based morphometry was implemented to determine their joint and independent effects on grey matter loss. The impact of these pathologies on WMH burden was then evaluated both in spatial and quantitative combined analyses, using voxel-based and generalized linear models respectively.
Results: 86.8% of patients in this cohort presented more than one pathology. The combined structural effect of these pathologies was a focal impact on hippocampal grey matter atrophy, primarily driven by HS and Alzheimer's pathology (family-wise error corrected, p < 0.05), which also exhibited the strongest individual effects (uncorrected, p < 0.001). WMHs, predominant in middle and anterior cerebral portions, were most strongly associated with vascular (T = 2.47, p = 0.017) and tau pathologies (T = 2.09, p = 0.041).
Conclusions: The mixed associations of these dementia neuroimaging hallmarks are relevant for the fine-tuning of diagnostic protocols and underscore the need for comprehensive pathology evaluations in the study of dementia phenotypes.
期刊介绍:
Alzheimer's Research & Therapy is an international peer-reviewed journal that focuses on translational research into Alzheimer's disease and other neurodegenerative diseases. It publishes open-access basic research, clinical trials, drug discovery and development studies, and epidemiologic studies. The journal also includes reviews, viewpoints, commentaries, debates, and reports. All articles published in Alzheimer's Research & Therapy are included in several reputable databases such as CAS, Current contents, DOAJ, Embase, Journal Citation Reports/Science Edition, MEDLINE, PubMed, PubMed Central, Science Citation Index Expanded (Web of Science) and Scopus.