{"title":"优势C4草在洪水驱动下的生存和生长有助于确定其沿高草草原水分梯度的分布。","authors":"Robert W Wernerehl, Thomas J Givnish","doi":"10.1002/ajb2.16457","DOIUrl":null,"url":null,"abstract":"<p><strong>Premise: </strong>Five C<sub>4</sub> grasses (Bouteloua curtipendula, Schizachyrium scoparium, Andropogon gerardii, Sorghastrum nutans, Spartina pectinata) dominate different portions of a moisture gradient from dry to wet tallgrass prairies in the Upper Midwest of the United States. We hypothesized that their distributions may partly reflect differences in flooding tolerance and context-specific growth relative to each other.</p><p><strong>Methods: </strong>We tested these ideas with greenhouse flooding and drought experiments, outdoor mesocosm experiments, and a natural experiment involving a month-long flood in two wet-mesic prairies.</p><p><strong>Results: </strong>Bouteloua promptly succumbed to inundation, so flooding intolerance likely excludes it from wet and wet-mesic prairies. Competition is likely to exclude short-statured Bouteloua from productive mesic sites. Schizachyrium is excluded from wet prairies by low flooding tolerance, demonstrated by all experiments. Sorghastrum had low flooding tolerance in both greenhouse and natural experiments, suggesting that physiological intolerance excludes it from wet prairies. Spartina had by far the greatest growth under the wettest mesocosm conditions; this and comparisons of species growth in monocultures vs. mixtures suggests that competition helps it dominate wet prairies. Indeed, quadrat presence of Spartina increased by 57% two years after flooding of two prairies, while that of upland grasses declined by 44%. The high flooding tolerance, lack of significant differences from other species in drought tolerance, and tall stature of Andropogon suggest that broad physiological tolerance combined with competitive ability allows it to thrive across the prairie moisture gradient.</p><p><strong>Conclusions: </strong>Flooding helps shape the distributions of dominant prairie grasses, and its effects may become more important as extreme rain events continue to increase.</p>","PeriodicalId":7691,"journal":{"name":"American Journal of Botany","volume":" ","pages":"e16457"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11744443/pdf/","citationCount":"0","resultStr":"{\"title\":\"Flood-driven survival and growth of dominant C<sub>4</sub> grasses helps set their distributions along tallgrass prairie moisture gradients.\",\"authors\":\"Robert W Wernerehl, Thomas J Givnish\",\"doi\":\"10.1002/ajb2.16457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Premise: </strong>Five C<sub>4</sub> grasses (Bouteloua curtipendula, Schizachyrium scoparium, Andropogon gerardii, Sorghastrum nutans, Spartina pectinata) dominate different portions of a moisture gradient from dry to wet tallgrass prairies in the Upper Midwest of the United States. We hypothesized that their distributions may partly reflect differences in flooding tolerance and context-specific growth relative to each other.</p><p><strong>Methods: </strong>We tested these ideas with greenhouse flooding and drought experiments, outdoor mesocosm experiments, and a natural experiment involving a month-long flood in two wet-mesic prairies.</p><p><strong>Results: </strong>Bouteloua promptly succumbed to inundation, so flooding intolerance likely excludes it from wet and wet-mesic prairies. Competition is likely to exclude short-statured Bouteloua from productive mesic sites. Schizachyrium is excluded from wet prairies by low flooding tolerance, demonstrated by all experiments. Sorghastrum had low flooding tolerance in both greenhouse and natural experiments, suggesting that physiological intolerance excludes it from wet prairies. Spartina had by far the greatest growth under the wettest mesocosm conditions; this and comparisons of species growth in monocultures vs. mixtures suggests that competition helps it dominate wet prairies. Indeed, quadrat presence of Spartina increased by 57% two years after flooding of two prairies, while that of upland grasses declined by 44%. The high flooding tolerance, lack of significant differences from other species in drought tolerance, and tall stature of Andropogon suggest that broad physiological tolerance combined with competitive ability allows it to thrive across the prairie moisture gradient.</p><p><strong>Conclusions: </strong>Flooding helps shape the distributions of dominant prairie grasses, and its effects may become more important as extreme rain events continue to increase.</p>\",\"PeriodicalId\":7691,\"journal\":{\"name\":\"American Journal of Botany\",\"volume\":\" \",\"pages\":\"e16457\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11744443/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Botany\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/ajb2.16457\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/ajb2.16457","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/8 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Flood-driven survival and growth of dominant C4 grasses helps set their distributions along tallgrass prairie moisture gradients.
Premise: Five C4 grasses (Bouteloua curtipendula, Schizachyrium scoparium, Andropogon gerardii, Sorghastrum nutans, Spartina pectinata) dominate different portions of a moisture gradient from dry to wet tallgrass prairies in the Upper Midwest of the United States. We hypothesized that their distributions may partly reflect differences in flooding tolerance and context-specific growth relative to each other.
Methods: We tested these ideas with greenhouse flooding and drought experiments, outdoor mesocosm experiments, and a natural experiment involving a month-long flood in two wet-mesic prairies.
Results: Bouteloua promptly succumbed to inundation, so flooding intolerance likely excludes it from wet and wet-mesic prairies. Competition is likely to exclude short-statured Bouteloua from productive mesic sites. Schizachyrium is excluded from wet prairies by low flooding tolerance, demonstrated by all experiments. Sorghastrum had low flooding tolerance in both greenhouse and natural experiments, suggesting that physiological intolerance excludes it from wet prairies. Spartina had by far the greatest growth under the wettest mesocosm conditions; this and comparisons of species growth in monocultures vs. mixtures suggests that competition helps it dominate wet prairies. Indeed, quadrat presence of Spartina increased by 57% two years after flooding of two prairies, while that of upland grasses declined by 44%. The high flooding tolerance, lack of significant differences from other species in drought tolerance, and tall stature of Andropogon suggest that broad physiological tolerance combined with competitive ability allows it to thrive across the prairie moisture gradient.
Conclusions: Flooding helps shape the distributions of dominant prairie grasses, and its effects may become more important as extreme rain events continue to increase.
期刊介绍:
The American Journal of Botany (AJB), the flagship journal of the Botanical Society of America (BSA), publishes peer-reviewed, innovative, significant research of interest to a wide audience of plant scientists in all areas of plant biology (structure, function, development, diversity, genetics, evolution, systematics), all levels of organization (molecular to ecosystem), and all plant groups and allied organisms (cyanobacteria, algae, fungi, and lichens). AJB requires authors to frame their research questions and discuss their results in terms of major questions of plant biology. In general, papers that are too narrowly focused, purely descriptive, natural history, broad surveys, or that contain only preliminary data will not be considered.