She Lin Chan, Teresa Kwok, Niusheng Xu, Tao Bo, Tiemin Huang
{"title":"乳制品中乳清蛋白的成像毛细管等电聚焦和在线质谱分析。","authors":"She Lin Chan, Teresa Kwok, Niusheng Xu, Tao Bo, Tiemin Huang","doi":"10.1016/j.ab.2025.115765","DOIUrl":null,"url":null,"abstract":"<p><p>Characterizing major bovine milk proteins, including whey and casein, is of significant interest in the dairy industry. The diverse array of protein proteoforms can be different in terms of genetic variation, breed ways, lactation stage, and animal nutritional status. Current routine methods for bovine milk protein profiling are typically based on immunological techniques, infrared spectroscopy, slab gel isoelectric focusing, capillary electrophoresis, and high-performance liquid chromatography. However, there are obvious disadvantages of existing approaches including low throughput, tedious operation, unsatisfactory repeatability, and lack of robust quantitation capability. In this study, we present a novel approach that, for the first time, combines imaged capillary isoelectric focusing with mass spectrometry to separate and characterize whey proteins in milk products. The established method provided a rapid, repeatable, accurate, and simultaneous analysis of α-lactalbumin, β-lactoglobulin A, and β-lactoglobulin B within 10 min for diverse bovine milk samples. The methodology was systematically validated regarding repeatability of pI and peak area, sensitivity, linearity and recovery. The integration of high-resolution mass spectrometry with nano-electrospray ionization and icIEF has been pivotal in accurately identifying intact whey proteins in milk products. This approach has significantly enhanced the precise characterization of protein proteoforms in milk.</p>","PeriodicalId":7830,"journal":{"name":"Analytical biochemistry","volume":"699 ","pages":"115765"},"PeriodicalIF":2.6000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Imaged capillary isoelectric focusing and online mass spectrometry for milk whey protein characterization in dairy products.\",\"authors\":\"She Lin Chan, Teresa Kwok, Niusheng Xu, Tao Bo, Tiemin Huang\",\"doi\":\"10.1016/j.ab.2025.115765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Characterizing major bovine milk proteins, including whey and casein, is of significant interest in the dairy industry. The diverse array of protein proteoforms can be different in terms of genetic variation, breed ways, lactation stage, and animal nutritional status. Current routine methods for bovine milk protein profiling are typically based on immunological techniques, infrared spectroscopy, slab gel isoelectric focusing, capillary electrophoresis, and high-performance liquid chromatography. However, there are obvious disadvantages of existing approaches including low throughput, tedious operation, unsatisfactory repeatability, and lack of robust quantitation capability. In this study, we present a novel approach that, for the first time, combines imaged capillary isoelectric focusing with mass spectrometry to separate and characterize whey proteins in milk products. The established method provided a rapid, repeatable, accurate, and simultaneous analysis of α-lactalbumin, β-lactoglobulin A, and β-lactoglobulin B within 10 min for diverse bovine milk samples. The methodology was systematically validated regarding repeatability of pI and peak area, sensitivity, linearity and recovery. The integration of high-resolution mass spectrometry with nano-electrospray ionization and icIEF has been pivotal in accurately identifying intact whey proteins in milk products. This approach has significantly enhanced the precise characterization of protein proteoforms in milk.</p>\",\"PeriodicalId\":7830,\"journal\":{\"name\":\"Analytical biochemistry\",\"volume\":\"699 \",\"pages\":\"115765\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ab.2025.115765\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.ab.2025.115765","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Imaged capillary isoelectric focusing and online mass spectrometry for milk whey protein characterization in dairy products.
Characterizing major bovine milk proteins, including whey and casein, is of significant interest in the dairy industry. The diverse array of protein proteoforms can be different in terms of genetic variation, breed ways, lactation stage, and animal nutritional status. Current routine methods for bovine milk protein profiling are typically based on immunological techniques, infrared spectroscopy, slab gel isoelectric focusing, capillary electrophoresis, and high-performance liquid chromatography. However, there are obvious disadvantages of existing approaches including low throughput, tedious operation, unsatisfactory repeatability, and lack of robust quantitation capability. In this study, we present a novel approach that, for the first time, combines imaged capillary isoelectric focusing with mass spectrometry to separate and characterize whey proteins in milk products. The established method provided a rapid, repeatable, accurate, and simultaneous analysis of α-lactalbumin, β-lactoglobulin A, and β-lactoglobulin B within 10 min for diverse bovine milk samples. The methodology was systematically validated regarding repeatability of pI and peak area, sensitivity, linearity and recovery. The integration of high-resolution mass spectrometry with nano-electrospray ionization and icIEF has been pivotal in accurately identifying intact whey proteins in milk products. This approach has significantly enhanced the precise characterization of protein proteoforms in milk.
期刊介绍:
The journal''s title Analytical Biochemistry: Methods in the Biological Sciences declares its broad scope: methods for the basic biological sciences that include biochemistry, molecular genetics, cell biology, proteomics, immunology, bioinformatics and wherever the frontiers of research take the field.
The emphasis is on methods from the strictly analytical to the more preparative that would include novel approaches to protein purification as well as improvements in cell and organ culture. The actual techniques are equally inclusive ranging from aptamers to zymology.
The journal has been particularly active in:
-Analytical techniques for biological molecules-
Aptamer selection and utilization-
Biosensors-
Chromatography-
Cloning, sequencing and mutagenesis-
Electrochemical methods-
Electrophoresis-
Enzyme characterization methods-
Immunological approaches-
Mass spectrometry of proteins and nucleic acids-
Metabolomics-
Nano level techniques-
Optical spectroscopy in all its forms.
The journal is reluctant to include most drug and strictly clinical studies as there are more suitable publication platforms for these types of papers.