高压微流体系统的加工与检测:综述。

IF 2.6 4区 工程技术 Q2 BIOCHEMICAL RESEARCH METHODS Biomicrofluidics Pub Date : 2025-01-06 eCollection Date: 2025-01-01 DOI:10.1063/5.0235201
Jiangyi Song, Shaoxin Meng, Jianben Liu, Naichao Chen
{"title":"高压微流体系统的加工与检测:综述。","authors":"Jiangyi Song, Shaoxin Meng, Jianben Liu, Naichao Chen","doi":"10.1063/5.0235201","DOIUrl":null,"url":null,"abstract":"<p><p>In the field of microfluidics, high-pressure microfluidics technology, which utilizes high driving pressure for microfluidic analysis, is an evolving technology. This technology combines microfluidics and pressurization, where the flow of fluid is controlled by means of high-pressure-driven devices greater than 10 MPa. This paper first reviews the existing high-pressure microfluidics systems and describes their components and applications. Then, it summarizes several materials used in the microfabrication of high-pressure microfluidics chips, reviewing their properties, processing methods, and bonding methods. In addition, advanced laser processing techniques for the microfabrication of high-pressure microfluidics chips are described. Last, the paper examines the analytical detection methods employed in high-pressure microfluidics systems, encompassing optical and electrochemical detection methods. The review of analytical detection methods shows the different functions and application scenarios of high-pressure microfluidics systems. In summary, this study provides an efficient and advanced microfluidics system, which can be widely used in chemical engineering, food industry, and environmental engineering under high pressure conditions.</p>","PeriodicalId":8855,"journal":{"name":"Biomicrofluidics","volume":"19 1","pages":"011501"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11706627/pdf/","citationCount":"0","resultStr":"{\"title\":\"Processing and inspection of high-pressure microfluidics systems: A review.\",\"authors\":\"Jiangyi Song, Shaoxin Meng, Jianben Liu, Naichao Chen\",\"doi\":\"10.1063/5.0235201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the field of microfluidics, high-pressure microfluidics technology, which utilizes high driving pressure for microfluidic analysis, is an evolving technology. This technology combines microfluidics and pressurization, where the flow of fluid is controlled by means of high-pressure-driven devices greater than 10 MPa. This paper first reviews the existing high-pressure microfluidics systems and describes their components and applications. Then, it summarizes several materials used in the microfabrication of high-pressure microfluidics chips, reviewing their properties, processing methods, and bonding methods. In addition, advanced laser processing techniques for the microfabrication of high-pressure microfluidics chips are described. Last, the paper examines the analytical detection methods employed in high-pressure microfluidics systems, encompassing optical and electrochemical detection methods. The review of analytical detection methods shows the different functions and application scenarios of high-pressure microfluidics systems. In summary, this study provides an efficient and advanced microfluidics system, which can be widely used in chemical engineering, food industry, and environmental engineering under high pressure conditions.</p>\",\"PeriodicalId\":8855,\"journal\":{\"name\":\"Biomicrofluidics\",\"volume\":\"19 1\",\"pages\":\"011501\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11706627/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomicrofluidics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0235201\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomicrofluidics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0235201","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

在微流控领域,利用高驱动压力进行微流控分析的高压微流控技术是一门新兴的技术。该技术结合了微流体和加压技术,通过大于10mpa的高压驱动装置来控制流体的流动。本文首先对现有的高压微流体系统进行了综述,介绍了它们的组成和应用。然后,综述了高压微流控芯片微加工中常用的几种材料,综述了它们的性能、加工方法和粘接方法。此外,还介绍了用于高压微流体芯片微细加工的先进激光加工技术。最后,本文探讨了高压微流体系统中使用的分析检测方法,包括光学和电化学检测方法。通过对分析检测方法的回顾,揭示了高压微流体系统的不同功能和应用场景。综上所述,本研究提供了一种高效、先进的微流体系统,在高压条件下可广泛应用于化工、食品工业、环境工程等领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Processing and inspection of high-pressure microfluidics systems: A review.

In the field of microfluidics, high-pressure microfluidics technology, which utilizes high driving pressure for microfluidic analysis, is an evolving technology. This technology combines microfluidics and pressurization, where the flow of fluid is controlled by means of high-pressure-driven devices greater than 10 MPa. This paper first reviews the existing high-pressure microfluidics systems and describes their components and applications. Then, it summarizes several materials used in the microfabrication of high-pressure microfluidics chips, reviewing their properties, processing methods, and bonding methods. In addition, advanced laser processing techniques for the microfabrication of high-pressure microfluidics chips are described. Last, the paper examines the analytical detection methods employed in high-pressure microfluidics systems, encompassing optical and electrochemical detection methods. The review of analytical detection methods shows the different functions and application scenarios of high-pressure microfluidics systems. In summary, this study provides an efficient and advanced microfluidics system, which can be widely used in chemical engineering, food industry, and environmental engineering under high pressure conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomicrofluidics
Biomicrofluidics 生物-纳米科技
CiteScore
5.80
自引率
3.10%
发文量
68
审稿时长
1.3 months
期刊介绍: Biomicrofluidics (BMF) is an online-only journal published by AIP Publishing to rapidly disseminate research in fundamental physicochemical mechanisms associated with microfluidic and nanofluidic phenomena. BMF also publishes research in unique microfluidic and nanofluidic techniques for diagnostic, medical, biological, pharmaceutical, environmental, and chemical applications. BMF offers quick publication, multimedia capability, and worldwide circulation among academic, national, and industrial laboratories. With a primary focus on high-quality original research articles, BMF also organizes special sections that help explain and define specific challenges unique to the interdisciplinary field of biomicrofluidics. Microfluidic and nanofluidic actuation (electrokinetics, acoustofluidics, optofluidics, capillary) Liquid Biopsy (microRNA profiling, circulating tumor cell isolation, exosome isolation, circulating tumor DNA quantification) Cell sorting, manipulation, and transfection (di/electrophoresis, magnetic beads, optical traps, electroporation) Molecular Separation and Concentration (isotachophoresis, concentration polarization, di/electrophoresis, magnetic beads, nanoparticles) Cell culture and analysis(single cell assays, stimuli response, stem cell transfection) Genomic and proteomic analysis (rapid gene sequencing, DNA/protein/carbohydrate arrays) Biosensors (immuno-assay, nucleic acid fluorescent assay, colorimetric assay, enzyme amplification, plasmonic and Raman nano-reporter, molecular beacon, FRET, aptamer, nanopore, optical fibers) Biophysical transport and characterization (DNA, single protein, ion channel and membrane dynamics, cell motility and communication mechanisms, electrophysiology, patch clamping). Etc...
期刊最新文献
Processing and inspection of high-pressure microfluidics systems: A review. Design of 3D printed chip to improve sensitivity of platelet adhesion through reinjection: Effect of alcohol consumption on platelet adhesion. Impact of dcEF on microRNA profiles in glioblastoma and exosomes using a novel microfluidic bioreactor. Bio-energy-powered microfluidic devices. Titrating chimeric antigen receptors on CAR T cells enabled by a microfluidic-based dosage-controlled intracellular mRNA delivery platform.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1