Jegan Rajendran, Nimi Wilson Sukumari, P Subha Hency Jose, Manikandan Rajendran, Manob Jyoti Saikia
{"title":"可穿戴医疗应用的自供电能量收集电子模块和信号处理框架的开发。","authors":"Jegan Rajendran, Nimi Wilson Sukumari, P Subha Hency Jose, Manikandan Rajendran, Manob Jyoti Saikia","doi":"10.3390/bioengineering11121252","DOIUrl":null,"url":null,"abstract":"<p><p>A battery-operated biomedical wearable device gradually assists in clinical tasks to monitor patients' health states regarding early diagnosis and detection. This paper presents the development of a self-powered portable electronic module by integrating an onboard energy-harvesting facility for electrocardiogram (ECG) signal processing and personalized health monitoring. The developed electronic module provides a customizable approach to power the device using a lithium-ion battery, a series of silicon photodiode arrays, and a solar panel. The new architecture and techniques offered by the developed method include an analog front-end unit, a signal processing unit, and a battery management unit for the acquiring and processing of real-time ECG signals. The dynamic multi-level wavelet packet decomposition framework has been used and applied to an ECG signal to extract the desired features by removing overlapped and repeated samples from an ECG signal. Further, a random forest with deep decision tree (RFDDT) architecture has been designed for offline ECG signal classification, and experimental results provide the highest accuracy of 99.72%. One assesses the custom-developed sensor by comparing its data with those of conventional biosensors. The onboard energy-harvesting and battery management circuits are designed with a BQ25505 microprocessor with the support of silicon photodiodes and solar cells which detect the ambient light variations and provide a maximum of 4.2 V supply to enable the continuous operation of an entire module. The measurements conducted on each unit of the proposed method demonstrate that the proposed signal-processing method significantly reduces the overlapping samples from the raw ECG data and the timing requirement criteria for personalized and wearable health monitoring. Also, it improves temporal requirements for ECG data processing while achieving excellent classification performance at a low computing cost.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"11 12","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11673964/pdf/","citationCount":"0","resultStr":"{\"title\":\"Development of Self-Powered Energy-Harvesting Electronic Module and Signal-Processing Framework for Wearable Healthcare Applications.\",\"authors\":\"Jegan Rajendran, Nimi Wilson Sukumari, P Subha Hency Jose, Manikandan Rajendran, Manob Jyoti Saikia\",\"doi\":\"10.3390/bioengineering11121252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A battery-operated biomedical wearable device gradually assists in clinical tasks to monitor patients' health states regarding early diagnosis and detection. This paper presents the development of a self-powered portable electronic module by integrating an onboard energy-harvesting facility for electrocardiogram (ECG) signal processing and personalized health monitoring. The developed electronic module provides a customizable approach to power the device using a lithium-ion battery, a series of silicon photodiode arrays, and a solar panel. The new architecture and techniques offered by the developed method include an analog front-end unit, a signal processing unit, and a battery management unit for the acquiring and processing of real-time ECG signals. The dynamic multi-level wavelet packet decomposition framework has been used and applied to an ECG signal to extract the desired features by removing overlapped and repeated samples from an ECG signal. Further, a random forest with deep decision tree (RFDDT) architecture has been designed for offline ECG signal classification, and experimental results provide the highest accuracy of 99.72%. One assesses the custom-developed sensor by comparing its data with those of conventional biosensors. The onboard energy-harvesting and battery management circuits are designed with a BQ25505 microprocessor with the support of silicon photodiodes and solar cells which detect the ambient light variations and provide a maximum of 4.2 V supply to enable the continuous operation of an entire module. The measurements conducted on each unit of the proposed method demonstrate that the proposed signal-processing method significantly reduces the overlapping samples from the raw ECG data and the timing requirement criteria for personalized and wearable health monitoring. Also, it improves temporal requirements for ECG data processing while achieving excellent classification performance at a low computing cost.</p>\",\"PeriodicalId\":8874,\"journal\":{\"name\":\"Bioengineering\",\"volume\":\"11 12\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11673964/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bioengineering11121252\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering11121252","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Development of Self-Powered Energy-Harvesting Electronic Module and Signal-Processing Framework for Wearable Healthcare Applications.
A battery-operated biomedical wearable device gradually assists in clinical tasks to monitor patients' health states regarding early diagnosis and detection. This paper presents the development of a self-powered portable electronic module by integrating an onboard energy-harvesting facility for electrocardiogram (ECG) signal processing and personalized health monitoring. The developed electronic module provides a customizable approach to power the device using a lithium-ion battery, a series of silicon photodiode arrays, and a solar panel. The new architecture and techniques offered by the developed method include an analog front-end unit, a signal processing unit, and a battery management unit for the acquiring and processing of real-time ECG signals. The dynamic multi-level wavelet packet decomposition framework has been used and applied to an ECG signal to extract the desired features by removing overlapped and repeated samples from an ECG signal. Further, a random forest with deep decision tree (RFDDT) architecture has been designed for offline ECG signal classification, and experimental results provide the highest accuracy of 99.72%. One assesses the custom-developed sensor by comparing its data with those of conventional biosensors. The onboard energy-harvesting and battery management circuits are designed with a BQ25505 microprocessor with the support of silicon photodiodes and solar cells which detect the ambient light variations and provide a maximum of 4.2 V supply to enable the continuous operation of an entire module. The measurements conducted on each unit of the proposed method demonstrate that the proposed signal-processing method significantly reduces the overlapping samples from the raw ECG data and the timing requirement criteria for personalized and wearable health monitoring. Also, it improves temporal requirements for ECG data processing while achieving excellent classification performance at a low computing cost.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering