一种基于语法的患者症状和疾病诊断信息发布方法以保证信息的保密性和完整性。

IF 3.8 3区 医学 Q2 ENGINEERING, BIOMEDICAL Bioengineering Pub Date : 2024-12-13 DOI:10.3390/bioengineering11121265
Sanjay Nag, Nabanita Basu, Payal Bose, Samir Kumar Bandyopadhyay
{"title":"一种基于语法的患者症状和疾病诊断信息发布方法以保证信息的保密性和完整性。","authors":"Sanjay Nag, Nabanita Basu, Payal Bose, Samir Kumar Bandyopadhyay","doi":"10.3390/bioengineering11121265","DOIUrl":null,"url":null,"abstract":"<p><p>Disease prediction using computer-based methods is now an established area of research. The importance of technological intervention is necessary for the better management of disease, as well as to optimize use of limited resources. Various AI-based methods for disease prediction have been documented in the literature. Validated AI-based systems support diagnoses and decision making by doctors/medical practitioners. The resource-efficient dissemination of the symptoms identified and the diagnoses undertaken is the requirement of the present-day scenario to support paperless, yet seamless, information sharing. The representation of symptoms using grammar provides a novel way for the resource-efficient encoding of disease diagnoses. Initially, symptoms are represented as strings, and, in terms of grammar, this is called a sentence. Moreover, the conversion of the generated string containing the symptoms and the diagnostic outcome to a QR code post encryption makes it portable. The code can be stored in a mobile application, in a secure manner, and can be scanned wherever required, universally. The patient can carry the medical condition and the diagnosis in the form of the QR code for medical consultations. This research work presents a case study based on two diseases, influenza and coronavirus, to highlight the proposed methodology. Both diseases have some common and overlapping symptoms. The proposed system can be implemented for any kind of disease detection, including clinical and diagnostic imaging.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"11 12","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11673805/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Novel Grammar-Based Approach for Patients' Symptom and Disease Diagnosis Information Dissemination to Maintain Confidentiality and Information Integrity.\",\"authors\":\"Sanjay Nag, Nabanita Basu, Payal Bose, Samir Kumar Bandyopadhyay\",\"doi\":\"10.3390/bioengineering11121265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Disease prediction using computer-based methods is now an established area of research. The importance of technological intervention is necessary for the better management of disease, as well as to optimize use of limited resources. Various AI-based methods for disease prediction have been documented in the literature. Validated AI-based systems support diagnoses and decision making by doctors/medical practitioners. The resource-efficient dissemination of the symptoms identified and the diagnoses undertaken is the requirement of the present-day scenario to support paperless, yet seamless, information sharing. The representation of symptoms using grammar provides a novel way for the resource-efficient encoding of disease diagnoses. Initially, symptoms are represented as strings, and, in terms of grammar, this is called a sentence. Moreover, the conversion of the generated string containing the symptoms and the diagnostic outcome to a QR code post encryption makes it portable. The code can be stored in a mobile application, in a secure manner, and can be scanned wherever required, universally. The patient can carry the medical condition and the diagnosis in the form of the QR code for medical consultations. This research work presents a case study based on two diseases, influenza and coronavirus, to highlight the proposed methodology. Both diseases have some common and overlapping symptoms. The proposed system can be implemented for any kind of disease detection, including clinical and diagnostic imaging.</p>\",\"PeriodicalId\":8874,\"journal\":{\"name\":\"Bioengineering\",\"volume\":\"11 12\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11673805/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bioengineering11121265\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering11121265","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

使用基于计算机的方法进行疾病预测现在是一个成熟的研究领域。技术干预的重要性对于更好地管理疾病以及优化有限资源的利用是必要的。文献中记载了各种基于人工智能的疾病预测方法。经过验证的基于人工智能的系统支持医生/医疗从业者的诊断和决策。以资源高效的方式传播所确定的症状和所进行的诊断,是当前方案的要求,以支持无纸化但无缝的信息共享。用语法表示症状为资源高效的疾病诊断编码提供了一种新的途径。最初,症状被表示为字符串,在语法方面,这被称为句子。此外,将包含症状和诊断结果的生成字符串转换为QR码后加密,使其易于携带。代码可以以安全的方式存储在移动应用程序中,并且可以在任何需要的地方进行扫描。患者可以携带病情和诊断,以二维码的形式进行医疗咨询。本研究工作介绍了基于流感和冠状病毒两种疾病的案例研究,以突出所提出的方法。这两种疾病都有一些共同和重叠的症状。该系统可用于任何类型的疾病检测,包括临床和诊断成像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Novel Grammar-Based Approach for Patients' Symptom and Disease Diagnosis Information Dissemination to Maintain Confidentiality and Information Integrity.

Disease prediction using computer-based methods is now an established area of research. The importance of technological intervention is necessary for the better management of disease, as well as to optimize use of limited resources. Various AI-based methods for disease prediction have been documented in the literature. Validated AI-based systems support diagnoses and decision making by doctors/medical practitioners. The resource-efficient dissemination of the symptoms identified and the diagnoses undertaken is the requirement of the present-day scenario to support paperless, yet seamless, information sharing. The representation of symptoms using grammar provides a novel way for the resource-efficient encoding of disease diagnoses. Initially, symptoms are represented as strings, and, in terms of grammar, this is called a sentence. Moreover, the conversion of the generated string containing the symptoms and the diagnostic outcome to a QR code post encryption makes it portable. The code can be stored in a mobile application, in a secure manner, and can be scanned wherever required, universally. The patient can carry the medical condition and the diagnosis in the form of the QR code for medical consultations. This research work presents a case study based on two diseases, influenza and coronavirus, to highlight the proposed methodology. Both diseases have some common and overlapping symptoms. The proposed system can be implemented for any kind of disease detection, including clinical and diagnostic imaging.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioengineering
Bioengineering Chemical Engineering-Bioengineering
CiteScore
4.00
自引率
8.70%
发文量
661
期刊介绍: Aims Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal: ● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings. ● Manuscripts regarding research proposals and research ideas will be particularly welcomed. ● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. ● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds. Scope ● Bionics and biological cybernetics: implantology; bio–abio interfaces ● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices ● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc. ● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology ● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering ● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation ● Translational bioengineering
期刊最新文献
3D-Printing of Artificial Aortic Heart Valve Using UV-Cured Silicone: Design and Performance Analysis. Precision Imaging for Early Detection of Esophageal Cancer. Systematic Review and Meta-Analysis of Remineralizing Agents: Outcomes on White Spot Lesions. Emerging Strategies for Revascularization: Use of Cell-Derived Extracellular Vesicles and Artificial Nanovesicles in Critical Limb Ischemia. Experimental Biomechanics of Neonatal Brachial Plexus Avulsion Injuries Using a Piglet Model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1