基于壁增强自监督预训练的膀胱壁和肿瘤半监督多区域分割框架。

IF 3.8 3区 医学 Q2 ENGINEERING, BIOMEDICAL Bioengineering Pub Date : 2024-12-04 DOI:10.3390/bioengineering11121225
Jie Wei, Yao Zheng, Dong Huang, Yang Liu, Xiaopan Xu, Hongbing Lu
{"title":"基于壁增强自监督预训练的膀胱壁和肿瘤半监督多区域分割框架。","authors":"Jie Wei, Yao Zheng, Dong Huang, Yang Liu, Xiaopan Xu, Hongbing Lu","doi":"10.3390/bioengineering11121225","DOIUrl":null,"url":null,"abstract":"<p><p>Bladder cancer is a prevalent and highly recurrent malignancy within the urinary tract. The accurate segmentation of the bladder wall and tumor in magnetic resonance imaging (MRI) is a crucial step in distinguishing between non-muscle-invasive and muscle-invasive types of bladder cancer, which plays a pivotal role in guiding clinical treatment decisions and influencing postoperative quality of life. The performance of data-driven methods is highly dependent on the quality of the annotations and datasets, however the amount of high-quality annotated data is very limited given the difficulty of professional radiologists to distinguish the mixed regions between the bladder wall and the tumor. The performance of the data-driven approach is highly dependent on the quality of the annotation and datasets, Therefore, in order to alleviate these problems and take full advantage of the potential of limited annotated and unlabeled data, we designed a semi-supervised multi-region framework for bladder wall and tumor segmentation. Our framework incorporates wall-enhanced self-supervised pre-training, designed to enhance discrimination of the bladder wall, and a semi-supervised segmentation network that utilizes both limited high-quality annotated data and unlabeled data. Contrast consistency and reconstruction observation losses are introduced to constrain the model to enhance the bladder walls, and adaptive learning rate and post-processing techniques are implemented to further improve segmentation performance. Extensive experimental validation demonstrated that our proposed method achieves promising results in the segmentation of both the bladder wall and the tumor. The average Dice Similarity Coefficients (DSCs) of the proposed method for the bladder wall and tumor were 0.8351 and 0.9175, respectively. Visualization results indicated that our method can effectively reduce excessive segmentation artifacts outside the bladder, and improve the clinical significance of the segmentation results.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"11 12","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11672963/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Semi-Supervised Multi-Region Segmentation Framework of Bladder Wall and Tumor with Wall-Enhanced Self-Supervised Pre-Training.\",\"authors\":\"Jie Wei, Yao Zheng, Dong Huang, Yang Liu, Xiaopan Xu, Hongbing Lu\",\"doi\":\"10.3390/bioengineering11121225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bladder cancer is a prevalent and highly recurrent malignancy within the urinary tract. The accurate segmentation of the bladder wall and tumor in magnetic resonance imaging (MRI) is a crucial step in distinguishing between non-muscle-invasive and muscle-invasive types of bladder cancer, which plays a pivotal role in guiding clinical treatment decisions and influencing postoperative quality of life. The performance of data-driven methods is highly dependent on the quality of the annotations and datasets, however the amount of high-quality annotated data is very limited given the difficulty of professional radiologists to distinguish the mixed regions between the bladder wall and the tumor. The performance of the data-driven approach is highly dependent on the quality of the annotation and datasets, Therefore, in order to alleviate these problems and take full advantage of the potential of limited annotated and unlabeled data, we designed a semi-supervised multi-region framework for bladder wall and tumor segmentation. Our framework incorporates wall-enhanced self-supervised pre-training, designed to enhance discrimination of the bladder wall, and a semi-supervised segmentation network that utilizes both limited high-quality annotated data and unlabeled data. Contrast consistency and reconstruction observation losses are introduced to constrain the model to enhance the bladder walls, and adaptive learning rate and post-processing techniques are implemented to further improve segmentation performance. Extensive experimental validation demonstrated that our proposed method achieves promising results in the segmentation of both the bladder wall and the tumor. The average Dice Similarity Coefficients (DSCs) of the proposed method for the bladder wall and tumor were 0.8351 and 0.9175, respectively. Visualization results indicated that our method can effectively reduce excessive segmentation artifacts outside the bladder, and improve the clinical significance of the segmentation results.</p>\",\"PeriodicalId\":8874,\"journal\":{\"name\":\"Bioengineering\",\"volume\":\"11 12\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11672963/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bioengineering11121225\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering11121225","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

膀胱癌是泌尿道内一种常见且高度复发的恶性肿瘤。磁共振成像(MRI)对膀胱壁和肿瘤的准确分割是区分非肌肉侵袭性和肌肉侵袭性膀胱癌的关键一步,对指导临床治疗决策和影响术后生活质量具有关键作用。数据驱动方法的性能高度依赖于注释和数据集的质量,然而,鉴于专业放射科医生难以区分膀胱壁和肿瘤之间的混合区域,高质量注释数据的数量非常有限。数据驱动方法的性能高度依赖于标注和数据集的质量,因此,为了缓解这些问题并充分利用有限的标注和未标记数据的潜力,我们设计了一个半监督的多区域膀胱壁和肿瘤分割框架。我们的框架结合了墙壁增强的自我监督预训练,旨在增强膀胱壁的识别,以及半监督分割网络,该网络利用有限的高质量注释数据和未标记数据。引入对比度一致性和重建观测损失来约束模型增强膀胱壁,并采用自适应学习率和后处理技术进一步提高分割性能。大量的实验验证表明,我们提出的方法在膀胱壁和肿瘤的分割上都取得了令人满意的结果。该方法对膀胱壁和肿瘤的平均Dice Similarity Coefficients (dsc)分别为0.8351和0.9175。可视化结果表明,我们的方法可以有效减少膀胱外过多的分割伪影,提高分割结果的临床意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Semi-Supervised Multi-Region Segmentation Framework of Bladder Wall and Tumor with Wall-Enhanced Self-Supervised Pre-Training.

Bladder cancer is a prevalent and highly recurrent malignancy within the urinary tract. The accurate segmentation of the bladder wall and tumor in magnetic resonance imaging (MRI) is a crucial step in distinguishing between non-muscle-invasive and muscle-invasive types of bladder cancer, which plays a pivotal role in guiding clinical treatment decisions and influencing postoperative quality of life. The performance of data-driven methods is highly dependent on the quality of the annotations and datasets, however the amount of high-quality annotated data is very limited given the difficulty of professional radiologists to distinguish the mixed regions between the bladder wall and the tumor. The performance of the data-driven approach is highly dependent on the quality of the annotation and datasets, Therefore, in order to alleviate these problems and take full advantage of the potential of limited annotated and unlabeled data, we designed a semi-supervised multi-region framework for bladder wall and tumor segmentation. Our framework incorporates wall-enhanced self-supervised pre-training, designed to enhance discrimination of the bladder wall, and a semi-supervised segmentation network that utilizes both limited high-quality annotated data and unlabeled data. Contrast consistency and reconstruction observation losses are introduced to constrain the model to enhance the bladder walls, and adaptive learning rate and post-processing techniques are implemented to further improve segmentation performance. Extensive experimental validation demonstrated that our proposed method achieves promising results in the segmentation of both the bladder wall and the tumor. The average Dice Similarity Coefficients (DSCs) of the proposed method for the bladder wall and tumor were 0.8351 and 0.9175, respectively. Visualization results indicated that our method can effectively reduce excessive segmentation artifacts outside the bladder, and improve the clinical significance of the segmentation results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioengineering
Bioengineering Chemical Engineering-Bioengineering
CiteScore
4.00
自引率
8.70%
发文量
661
期刊介绍: Aims Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal: ● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings. ● Manuscripts regarding research proposals and research ideas will be particularly welcomed. ● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. ● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds. Scope ● Bionics and biological cybernetics: implantology; bio–abio interfaces ● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices ● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc. ● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology ● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering ● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation ● Translational bioengineering
期刊最新文献
3D-Printing of Artificial Aortic Heart Valve Using UV-Cured Silicone: Design and Performance Analysis. Precision Imaging for Early Detection of Esophageal Cancer. Systematic Review and Meta-Analysis of Remineralizing Agents: Outcomes on White Spot Lesions. Emerging Strategies for Revascularization: Use of Cell-Derived Extracellular Vesicles and Artificial Nanovesicles in Critical Limb Ischemia. Experimental Biomechanics of Neonatal Brachial Plexus Avulsion Injuries Using a Piglet Model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1