可调微泡制剂的快速表征方法。

IF 3.8 3区 医学 Q2 ENGINEERING, BIOMEDICAL Bioengineering Pub Date : 2024-12-03 DOI:10.3390/bioengineering11121224
Savannah L Harpster, Alexandra M Piñeiro, Joyce Y Wong
{"title":"可调微泡制剂的快速表征方法。","authors":"Savannah L Harpster, Alexandra M Piñeiro, Joyce Y Wong","doi":"10.3390/bioengineering11121224","DOIUrl":null,"url":null,"abstract":"<p><p>To optimize microbubble formulations for clinical applications, the size distribution, concentration, and acoustic intensity must be rapidly measurable to allow for the successful iteration of microbubble design. In this paper, a comprehensive method was developed to compare microbubble formulations with different lipid shell compositions using optical and acoustic methods of measurement to collect the size distribution, concentration, and mean scattering intensity. An open-source ImageJ macro code was modified for the selective counting and sizing of brightfield microbubble images. A high-throughput agarose phantom was designed to collect multiple scattering reflections of microbubble samples to estimate the echogenicity of each microbubble solution. The information contained in the size distribution and concentration, combined with the instantaneous scattering power, can identify modifications needed for prototyping specific microbubble formulations.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"11 12","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11673760/pdf/","citationCount":"0","resultStr":"{\"title\":\"Methods for Rapid Characterization of Tunable Microbubble Formulations.\",\"authors\":\"Savannah L Harpster, Alexandra M Piñeiro, Joyce Y Wong\",\"doi\":\"10.3390/bioengineering11121224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To optimize microbubble formulations for clinical applications, the size distribution, concentration, and acoustic intensity must be rapidly measurable to allow for the successful iteration of microbubble design. In this paper, a comprehensive method was developed to compare microbubble formulations with different lipid shell compositions using optical and acoustic methods of measurement to collect the size distribution, concentration, and mean scattering intensity. An open-source ImageJ macro code was modified for the selective counting and sizing of brightfield microbubble images. A high-throughput agarose phantom was designed to collect multiple scattering reflections of microbubble samples to estimate the echogenicity of each microbubble solution. The information contained in the size distribution and concentration, combined with the instantaneous scattering power, can identify modifications needed for prototyping specific microbubble formulations.</p>\",\"PeriodicalId\":8874,\"journal\":{\"name\":\"Bioengineering\",\"volume\":\"11 12\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11673760/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bioengineering11121224\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering11121224","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

为了优化临床应用的微泡配方,必须快速测量尺寸分布、浓度和声强,以允许微泡设计的成功迭代。本文建立了一种综合的方法,利用光学和声学测量方法来比较不同脂壳组成的微泡配方,以收集其尺寸分布、浓度和平均散射强度。修改了一个开源的ImageJ宏代码,用于对明场微气泡图像进行选择性计数和大小调整。设计了一种高通量琼脂糖模体,用于收集微泡样品的多次散射反射,以估计每个微泡溶液的回声性。包含在尺寸分布和浓度中的信息,结合瞬时散射功率,可以确定原型特定微泡配方所需的修改。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Methods for Rapid Characterization of Tunable Microbubble Formulations.

To optimize microbubble formulations for clinical applications, the size distribution, concentration, and acoustic intensity must be rapidly measurable to allow for the successful iteration of microbubble design. In this paper, a comprehensive method was developed to compare microbubble formulations with different lipid shell compositions using optical and acoustic methods of measurement to collect the size distribution, concentration, and mean scattering intensity. An open-source ImageJ macro code was modified for the selective counting and sizing of brightfield microbubble images. A high-throughput agarose phantom was designed to collect multiple scattering reflections of microbubble samples to estimate the echogenicity of each microbubble solution. The information contained in the size distribution and concentration, combined with the instantaneous scattering power, can identify modifications needed for prototyping specific microbubble formulations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioengineering
Bioengineering Chemical Engineering-Bioengineering
CiteScore
4.00
自引率
8.70%
发文量
661
期刊介绍: Aims Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal: ● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings. ● Manuscripts regarding research proposals and research ideas will be particularly welcomed. ● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. ● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds. Scope ● Bionics and biological cybernetics: implantology; bio–abio interfaces ● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices ● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc. ● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology ● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering ● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation ● Translational bioengineering
期刊最新文献
3D-Printing of Artificial Aortic Heart Valve Using UV-Cured Silicone: Design and Performance Analysis. Precision Imaging for Early Detection of Esophageal Cancer. Systematic Review and Meta-Analysis of Remineralizing Agents: Outcomes on White Spot Lesions. Emerging Strategies for Revascularization: Use of Cell-Derived Extracellular Vesicles and Artificial Nanovesicles in Critical Limb Ischemia. Experimental Biomechanics of Neonatal Brachial Plexus Avulsion Injuries Using a Piglet Model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1