医学诊断的多模态融合:一个全面的综述。

IF 3.8 3区 医学 Q2 ENGINEERING, BIOMEDICAL Bioengineering Pub Date : 2024-12-05 DOI:10.3390/bioengineering11121233
Sachin Kumar, Sita Rani, Shivani Sharma, Hong Min
{"title":"医学诊断的多模态融合:一个全面的综述。","authors":"Sachin Kumar, Sita Rani, Shivani Sharma, Hong Min","doi":"10.3390/bioengineering11121233","DOIUrl":null,"url":null,"abstract":"<p><p>Utilizing information from multiple sources is a preferred and more precise method for medical experts to confirm a diagnosis. Each source provides critical information about the disease that might otherwise be absent in other modalities. Combining information from various medical sources boosts confidence in the diagnosis process, enabling the creation of an effective treatment plan for the patient. The scarcity of medical experts to diagnose diseases motivates the development of automatic diagnoses relying on multimodal data. With the progress in artificial intelligence technology, automated diagnosis using multimodal fusion techniques is now possible. Nevertheless, the concept of multimodal medical diagnosis is still new and requires an understanding of the diverse aspects of multimodal data and its related challenges. This review article examines the various aspects of multimodal medical diagnosis to equip readers, academicians, and researchers with necessary knowledge to advance multimodal medical research. The chosen articles in the study underwent thorough screening from reputable journals and publishers to offer high-quality content to readers, who can then apply the knowledge to produce quality research. Besides, the need for multimodal information and the associated challenges are discussed with solutions. Additionally, ethical issues of using artificial intelligence in medical diagnosis is also discussed.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"11 12","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11672922/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multimodality Fusion Aspects of Medical Diagnosis: A Comprehensive Review.\",\"authors\":\"Sachin Kumar, Sita Rani, Shivani Sharma, Hong Min\",\"doi\":\"10.3390/bioengineering11121233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Utilizing information from multiple sources is a preferred and more precise method for medical experts to confirm a diagnosis. Each source provides critical information about the disease that might otherwise be absent in other modalities. Combining information from various medical sources boosts confidence in the diagnosis process, enabling the creation of an effective treatment plan for the patient. The scarcity of medical experts to diagnose diseases motivates the development of automatic diagnoses relying on multimodal data. With the progress in artificial intelligence technology, automated diagnosis using multimodal fusion techniques is now possible. Nevertheless, the concept of multimodal medical diagnosis is still new and requires an understanding of the diverse aspects of multimodal data and its related challenges. This review article examines the various aspects of multimodal medical diagnosis to equip readers, academicians, and researchers with necessary knowledge to advance multimodal medical research. The chosen articles in the study underwent thorough screening from reputable journals and publishers to offer high-quality content to readers, who can then apply the knowledge to produce quality research. Besides, the need for multimodal information and the associated challenges are discussed with solutions. Additionally, ethical issues of using artificial intelligence in medical diagnosis is also discussed.</p>\",\"PeriodicalId\":8874,\"journal\":{\"name\":\"Bioengineering\",\"volume\":\"11 12\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11672922/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bioengineering11121233\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering11121233","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

利用来自多个来源的信息是医学专家确认诊断的首选和更精确的方法。每个来源都提供了关于疾病的重要信息,否则在其他方式中可能没有这些信息。结合来自各种医疗来源的信息可以增强对诊断过程的信心,从而能够为患者制定有效的治疗计划。医学专家诊断疾病的缺乏促使了依赖多模态数据的自动诊断的发展。随着人工智能技术的进步,利用多模态融合技术进行自动诊断已成为可能。然而,多模态医学诊断的概念仍然是新的,需要了解多模态数据的各个方面及其相关挑战。这篇综述文章探讨了多模态医学诊断的各个方面,为读者、学者和研究人员提供必要的知识,以推进多模态医学研究。研究中选择的文章经过了从知名期刊和出版商的彻底筛选,为读者提供高质量的内容,读者可以应用这些知识来进行高质量的研究。此外,还讨论了对多式联运信息的需求和相关挑战,并提出了解决方案。此外,还讨论了在医学诊断中使用人工智能的伦理问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multimodality Fusion Aspects of Medical Diagnosis: A Comprehensive Review.

Utilizing information from multiple sources is a preferred and more precise method for medical experts to confirm a diagnosis. Each source provides critical information about the disease that might otherwise be absent in other modalities. Combining information from various medical sources boosts confidence in the diagnosis process, enabling the creation of an effective treatment plan for the patient. The scarcity of medical experts to diagnose diseases motivates the development of automatic diagnoses relying on multimodal data. With the progress in artificial intelligence technology, automated diagnosis using multimodal fusion techniques is now possible. Nevertheless, the concept of multimodal medical diagnosis is still new and requires an understanding of the diverse aspects of multimodal data and its related challenges. This review article examines the various aspects of multimodal medical diagnosis to equip readers, academicians, and researchers with necessary knowledge to advance multimodal medical research. The chosen articles in the study underwent thorough screening from reputable journals and publishers to offer high-quality content to readers, who can then apply the knowledge to produce quality research. Besides, the need for multimodal information and the associated challenges are discussed with solutions. Additionally, ethical issues of using artificial intelligence in medical diagnosis is also discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioengineering
Bioengineering Chemical Engineering-Bioengineering
CiteScore
4.00
自引率
8.70%
发文量
661
期刊介绍: Aims Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal: ● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings. ● Manuscripts regarding research proposals and research ideas will be particularly welcomed. ● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. ● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds. Scope ● Bionics and biological cybernetics: implantology; bio–abio interfaces ● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices ● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc. ● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology ● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering ● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation ● Translational bioengineering
期刊最新文献
3D-Printing of Artificial Aortic Heart Valve Using UV-Cured Silicone: Design and Performance Analysis. Precision Imaging for Early Detection of Esophageal Cancer. Systematic Review and Meta-Analysis of Remineralizing Agents: Outcomes on White Spot Lesions. Emerging Strategies for Revascularization: Use of Cell-Derived Extracellular Vesicles and Artificial Nanovesicles in Critical Limb Ischemia. Experimental Biomechanics of Neonatal Brachial Plexus Avulsion Injuries Using a Piglet Model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1