静电磁场暴露导致电离辐射暴露的人神经母细胞瘤细胞小细胞周期中断和活性氧水平的变化。

IF 1.8 3区 生物学 Q3 BIOLOGY Bioelectromagnetics Pub Date : 2025-01-08 DOI:10.1002/bem.22538
Valtteri Nieminen, Jan Seppälä, Tuomas Virén, Jukka Juutilainen, Jonne Naarala, Jukka Luukkonen
{"title":"静电磁场暴露导致电离辐射暴露的人神经母细胞瘤细胞小细胞周期中断和活性氧水平的变化。","authors":"Valtteri Nieminen,&nbsp;Jan Seppälä,&nbsp;Tuomas Virén,&nbsp;Jukka Juutilainen,&nbsp;Jonne Naarala,&nbsp;Jukka Luukkonen","doi":"10.1002/bem.22538","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Although static magnetic fields (SMFs) have been reported to induce only minimal biological effects, it has been proposed that they may alter the effects of other agents, such as ionizing radiation. We sham-exposed or exposed human SH-SY5Y neuroblastoma cells to 0.5-, 1.5-, 2.5-, or 3.5-mT SMFs for 24 h either before or after irradiation at 0, 0.4 or 2.0 Gy. After the exposures, cell cycle distribution (subG1 for apoptosis), reactive oxygen species (ROS) levels, caspase-3 activity, and clonogenic survival were assayed. Increase of G0/G1 and decrease of S phase cells was observed in samples exposed to a 3.5-mT SMF after irradiation. The same exposure schedule with a 1.5-mT SMF was associated with an increase of S phase cells, and an increase in ROS levels. Conversely, a decrease in ROS levels was observed in cells exposed to a 2.5-mT SMF before ionizing radiation. No cell cycle changes were observed with SMF exposures before irradiation. Caspase-3 activity or clonogenic survival was not affected by SMF exposures, irrespective of the exposure schedule. In conclusion, small changes in cell cycle distribution and ROS levels were observed in SH-SY5Y cells exposed to SMFs, with more prominent effects observed when SMF exposure was applied after irradiation. Our results suggest that SMF-induced effects show no linear dependency on magnetic flux density below 5 mT. Notably, SMF exposures did not significantly potentiate the effects of ionizing radiation but rather caused an independent additive effect. Bioelectromagnetics. 00:00–00, 2024.</p></div>","PeriodicalId":8956,"journal":{"name":"Bioelectromagnetics","volume":"46 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Static Magnetic Field Exposure Causes Small Cell Cycle Disruptions and Changes in Reactive Oxygen Species Levels in Ionizing Radiation Exposed Human Neuroblastoma Cells\",\"authors\":\"Valtteri Nieminen,&nbsp;Jan Seppälä,&nbsp;Tuomas Virén,&nbsp;Jukka Juutilainen,&nbsp;Jonne Naarala,&nbsp;Jukka Luukkonen\",\"doi\":\"10.1002/bem.22538\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Although static magnetic fields (SMFs) have been reported to induce only minimal biological effects, it has been proposed that they may alter the effects of other agents, such as ionizing radiation. We sham-exposed or exposed human SH-SY5Y neuroblastoma cells to 0.5-, 1.5-, 2.5-, or 3.5-mT SMFs for 24 h either before or after irradiation at 0, 0.4 or 2.0 Gy. After the exposures, cell cycle distribution (subG1 for apoptosis), reactive oxygen species (ROS) levels, caspase-3 activity, and clonogenic survival were assayed. Increase of G0/G1 and decrease of S phase cells was observed in samples exposed to a 3.5-mT SMF after irradiation. The same exposure schedule with a 1.5-mT SMF was associated with an increase of S phase cells, and an increase in ROS levels. Conversely, a decrease in ROS levels was observed in cells exposed to a 2.5-mT SMF before ionizing radiation. No cell cycle changes were observed with SMF exposures before irradiation. Caspase-3 activity or clonogenic survival was not affected by SMF exposures, irrespective of the exposure schedule. In conclusion, small changes in cell cycle distribution and ROS levels were observed in SH-SY5Y cells exposed to SMFs, with more prominent effects observed when SMF exposure was applied after irradiation. Our results suggest that SMF-induced effects show no linear dependency on magnetic flux density below 5 mT. Notably, SMF exposures did not significantly potentiate the effects of ionizing radiation but rather caused an independent additive effect. Bioelectromagnetics. 00:00–00, 2024.</p></div>\",\"PeriodicalId\":8956,\"journal\":{\"name\":\"Bioelectromagnetics\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioelectromagnetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bem.22538\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectromagnetics","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bem.22538","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

虽然据报道,静态磁场(SMFs)只会引起最小的生物效应,但有人提出,它们可能会改变其他物质(如电离辐射)的效应。我们将人SH-SY5Y神经母细胞瘤细胞假暴露或暴露于0.5、1.5、2.5或3.5 mt的smf中,在0、0.4或2.0 Gy辐射之前或之后24小时。暴露后,检测细胞周期分布(凋亡subG1)、活性氧(ROS)水平、caspase-3活性和克隆存活率。在3.5 mt的SMF照射后,观察到G0/G1增加,S期细胞减少。相同的1.5 mt SMF暴露时间表与S期细胞的增加和ROS水平的增加有关。相反,在电离辐射前暴露于2.5 mt SMF的细胞中,观察到ROS水平下降。SMF照射前未观察到细胞周期变化。无论暴露时间如何,SMF暴露均不影响Caspase-3活性或克隆存活。综上所述,SMF对SH-SY5Y细胞周期分布和ROS水平的影响较小,且SMF辐照后对SH-SY5Y细胞的影响更为显著。我们的研究结果表明,smf诱导的效应与5 mT以下的磁通密度没有线性关系。值得注意的是,SMF暴露并没有显著增强电离辐射的影响,而是造成了独立的加性效应。生物电磁学。00:00- 00,2024。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Static Magnetic Field Exposure Causes Small Cell Cycle Disruptions and Changes in Reactive Oxygen Species Levels in Ionizing Radiation Exposed Human Neuroblastoma Cells

Although static magnetic fields (SMFs) have been reported to induce only minimal biological effects, it has been proposed that they may alter the effects of other agents, such as ionizing radiation. We sham-exposed or exposed human SH-SY5Y neuroblastoma cells to 0.5-, 1.5-, 2.5-, or 3.5-mT SMFs for 24 h either before or after irradiation at 0, 0.4 or 2.0 Gy. After the exposures, cell cycle distribution (subG1 for apoptosis), reactive oxygen species (ROS) levels, caspase-3 activity, and clonogenic survival were assayed. Increase of G0/G1 and decrease of S phase cells was observed in samples exposed to a 3.5-mT SMF after irradiation. The same exposure schedule with a 1.5-mT SMF was associated with an increase of S phase cells, and an increase in ROS levels. Conversely, a decrease in ROS levels was observed in cells exposed to a 2.5-mT SMF before ionizing radiation. No cell cycle changes were observed with SMF exposures before irradiation. Caspase-3 activity or clonogenic survival was not affected by SMF exposures, irrespective of the exposure schedule. In conclusion, small changes in cell cycle distribution and ROS levels were observed in SH-SY5Y cells exposed to SMFs, with more prominent effects observed when SMF exposure was applied after irradiation. Our results suggest that SMF-induced effects show no linear dependency on magnetic flux density below 5 mT. Notably, SMF exposures did not significantly potentiate the effects of ionizing radiation but rather caused an independent additive effect. Bioelectromagnetics. 00:00–00, 2024.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioelectromagnetics
Bioelectromagnetics 生物-生物物理
CiteScore
4.60
自引率
0.00%
发文量
44
审稿时长
6-12 weeks
期刊介绍: Bioelectromagnetics is published by Wiley-Liss, Inc., for the Bioelectromagnetics Society and is the official journal of the Bioelectromagnetics Society and the European Bioelectromagnetics Association. It is a peer-reviewed, internationally circulated scientific journal that specializes in reporting original data on biological effects and applications of electromagnetic fields that range in frequency from zero hertz (static fields) to the terahertz undulations and visible light. Both experimental and clinical data are of interest to the journal''s readers as are theoretical papers or reviews that offer novel insights into or criticism of contemporary concepts and theories of field-body interactions. The Bioelectromagnetics Society, which sponsors the journal, also welcomes experimental or clinical papers on the domains of sonic and ultrasonic radiation.
期刊最新文献
Issue Information Recent Advances and Future Perspective in Computational Bioelectromagnetics for Exposure Assessments Recommendations for the Safe Application of Temporal Interference Stimulation in the Human Brain Part I: Principles of Electrical Neuromodulation and Adverse Effects Impact of Microwave Exposure on Cynomolgus Monkeys: EEG and ECG Analysis Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1