通过提出的IHC-GAN模型自动图像生成和乳腺癌免疫生物学分期预测。

IF 2.9 3区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING BMC Medical Imaging Pub Date : 2025-01-06 DOI:10.1186/s12880-024-01522-y
Afaf Saad, Noha Ghatwary, Safa M Gasser, Mohamed S ElMahallawy
{"title":"通过提出的IHC-GAN模型自动图像生成和乳腺癌免疫生物学分期预测。","authors":"Afaf Saad, Noha Ghatwary, Safa M Gasser, Mohamed S ElMahallawy","doi":"10.1186/s12880-024-01522-y","DOIUrl":null,"url":null,"abstract":"<p><p>Invasive breast cancer diagnosis and treatment planning require an accurate assessment of human epidermal growth factor receptor 2 (HER2) expression levels. While immunohistochemical techniques (IHC) are the gold standard for HER2 evaluation, their implementation can be resource-intensive and costly. To reduce these obstacles and expedite the procedure, we present an efficient deep-learning model that generates high-quality IHC-stained images directly from Hematoxylin and Eosin (H&E) stained images. We propose a new IHC-GAN that enhances the Pix2PixHD model into a dual generator module, improving its performance and simplifying its structure. Furthermore, to strengthen feature extraction for HE-stained image classification, we integrate MobileNetV3 as the backbone network. The extracted features are then merged with those generated by the generator to improve overall performance. Moreover, the decoder's performance is enhanced by providing the related features from the classified labels by incorporating the adaptive instance normalization technique. The proposed IHC-GAN was trained and validated on a comprehensive dataset comprising 4,870 registered image pairs, encompassing a spectrum of HER2 expression levels. Our findings demonstrate promising results in translating H&E images to IHC-equivalent representations, offering a potential solution to reduce the costs associated with traditional HER2 assessment methods. We extensively validate our model and the current dataset. We compare it with state-of-the-art techniques, achieving high performance using different evaluation metrics, showing 0.0927 FID, 22.87 PSNR, and 0.3735 SSIM. The proposed approach exhibits significant enhancements over current GAN models, including an 88% reduction in Frechet Inception Distance (FID), a 4% enhancement in Learned Perceptual Image Patch Similarity (LPIPS), a 10% increase in Peak Signal-to-Noise Ratio (PSNR), and a 45% reduction in Mean Squared Error (MSE). This advancement holds significant potential for enhancing efficiency, reducing manpower requirements, and facilitating timely treatment decisions in breast cancer care.</p>","PeriodicalId":9020,"journal":{"name":"BMC Medical Imaging","volume":"25 1","pages":"6"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11702099/pdf/","citationCount":"0","resultStr":"{\"title\":\"Automatic image generation and stage prediction of breast cancer immunobiological through a proposed IHC-GAN model.\",\"authors\":\"Afaf Saad, Noha Ghatwary, Safa M Gasser, Mohamed S ElMahallawy\",\"doi\":\"10.1186/s12880-024-01522-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Invasive breast cancer diagnosis and treatment planning require an accurate assessment of human epidermal growth factor receptor 2 (HER2) expression levels. While immunohistochemical techniques (IHC) are the gold standard for HER2 evaluation, their implementation can be resource-intensive and costly. To reduce these obstacles and expedite the procedure, we present an efficient deep-learning model that generates high-quality IHC-stained images directly from Hematoxylin and Eosin (H&E) stained images. We propose a new IHC-GAN that enhances the Pix2PixHD model into a dual generator module, improving its performance and simplifying its structure. Furthermore, to strengthen feature extraction for HE-stained image classification, we integrate MobileNetV3 as the backbone network. The extracted features are then merged with those generated by the generator to improve overall performance. Moreover, the decoder's performance is enhanced by providing the related features from the classified labels by incorporating the adaptive instance normalization technique. The proposed IHC-GAN was trained and validated on a comprehensive dataset comprising 4,870 registered image pairs, encompassing a spectrum of HER2 expression levels. Our findings demonstrate promising results in translating H&E images to IHC-equivalent representations, offering a potential solution to reduce the costs associated with traditional HER2 assessment methods. We extensively validate our model and the current dataset. We compare it with state-of-the-art techniques, achieving high performance using different evaluation metrics, showing 0.0927 FID, 22.87 PSNR, and 0.3735 SSIM. The proposed approach exhibits significant enhancements over current GAN models, including an 88% reduction in Frechet Inception Distance (FID), a 4% enhancement in Learned Perceptual Image Patch Similarity (LPIPS), a 10% increase in Peak Signal-to-Noise Ratio (PSNR), and a 45% reduction in Mean Squared Error (MSE). This advancement holds significant potential for enhancing efficiency, reducing manpower requirements, and facilitating timely treatment decisions in breast cancer care.</p>\",\"PeriodicalId\":9020,\"journal\":{\"name\":\"BMC Medical Imaging\",\"volume\":\"25 1\",\"pages\":\"6\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11702099/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Medical Imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12880-024-01522-y\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12880-024-01522-y","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

侵袭性乳腺癌的诊断和治疗计划需要准确评估人表皮生长因子受体2 (HER2)的表达水平。虽然免疫组织化学技术(IHC)是HER2评估的金标准,但其实施可能是资源密集型和昂贵的。为了减少这些障碍并加快过程,我们提出了一种高效的深度学习模型,该模型直接从苏木精和伊红(H&E)染色图像中生成高质量的ihc染色图像。我们提出了一种新的IHC-GAN,将Pix2PixHD模型增强为双发生器模块,提高了其性能并简化了其结构。此外,为了加强he染色图像分类的特征提取,我们集成了MobileNetV3作为骨干网络。然后将提取的特征与生成器生成的特征合并,以提高整体性能。此外,通过结合自适应实例归一化技术提供分类标签的相关特征,提高了解码器的性能。提出的IHC-GAN在包含4,870个注册图像对的综合数据集上进行了训练和验证,包括HER2表达水平的谱。我们的研究结果表明,在将H&E图像转换为ihc等效表示方面取得了可喜的成果,为降低与传统HER2评估方法相关的成本提供了一种潜在的解决方案。我们广泛地验证了我们的模型和当前数据集。我们将其与最先进的技术进行比较,使用不同的评估指标实现高性能,显示出0.0927 FID, 22.87 PSNR和0.3735 SSIM。与目前的GAN模型相比,该方法具有显著的增强,包括Frechet Inception Distance (FID)降低88%,Learned Perceptual Image Patch Similarity (LPIPS)提高4%,峰值信噪比(PSNR)提高10%,均方误差(MSE)降低45%。这一进展在提高乳腺癌护理效率、减少人力需求和促进及时治疗决策方面具有重大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic image generation and stage prediction of breast cancer immunobiological through a proposed IHC-GAN model.

Invasive breast cancer diagnosis and treatment planning require an accurate assessment of human epidermal growth factor receptor 2 (HER2) expression levels. While immunohistochemical techniques (IHC) are the gold standard for HER2 evaluation, their implementation can be resource-intensive and costly. To reduce these obstacles and expedite the procedure, we present an efficient deep-learning model that generates high-quality IHC-stained images directly from Hematoxylin and Eosin (H&E) stained images. We propose a new IHC-GAN that enhances the Pix2PixHD model into a dual generator module, improving its performance and simplifying its structure. Furthermore, to strengthen feature extraction for HE-stained image classification, we integrate MobileNetV3 as the backbone network. The extracted features are then merged with those generated by the generator to improve overall performance. Moreover, the decoder's performance is enhanced by providing the related features from the classified labels by incorporating the adaptive instance normalization technique. The proposed IHC-GAN was trained and validated on a comprehensive dataset comprising 4,870 registered image pairs, encompassing a spectrum of HER2 expression levels. Our findings demonstrate promising results in translating H&E images to IHC-equivalent representations, offering a potential solution to reduce the costs associated with traditional HER2 assessment methods. We extensively validate our model and the current dataset. We compare it with state-of-the-art techniques, achieving high performance using different evaluation metrics, showing 0.0927 FID, 22.87 PSNR, and 0.3735 SSIM. The proposed approach exhibits significant enhancements over current GAN models, including an 88% reduction in Frechet Inception Distance (FID), a 4% enhancement in Learned Perceptual Image Patch Similarity (LPIPS), a 10% increase in Peak Signal-to-Noise Ratio (PSNR), and a 45% reduction in Mean Squared Error (MSE). This advancement holds significant potential for enhancing efficiency, reducing manpower requirements, and facilitating timely treatment decisions in breast cancer care.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BMC Medical Imaging
BMC Medical Imaging RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
4.60
自引率
3.70%
发文量
198
审稿时长
27 weeks
期刊介绍: BMC Medical Imaging is an open access journal publishing original peer-reviewed research articles in the development, evaluation, and use of imaging techniques and image processing tools to diagnose and manage disease.
期刊最新文献
Computed tomography enterography-based radiomics nomograms to predict inflammatory activity for ileocolonic Crohn's disease: a preliminary single-center retrospective study. A deep learning approach for early prediction of breast cancer neoadjuvant chemotherapy response on multistage bimodal ultrasound images. Clinical study of colorViz fusion image vascular grading based on multi-phase CTA reconstruction in acute ischemic stroke. Association between non-alcoholic fatty liver disease and progression of abdominal aortic aneurysm: a multicenter study. Which PSMA PET/CT interpretation criteria most effectively diagnose prostate cancer? a retrospective cohort study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1