黑穗病菌黑穗病菌DSM 4500生产和纯化纤维素糖脂的生物工艺研究。

IF 3.5 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Bioprocess and Biosystems Engineering Pub Date : 2025-01-10 DOI:10.1007/s00449-025-03127-3
André D Valkenburg, George M Teke, Eugéne van Rensburg, Robert W M Pott
{"title":"黑穗病菌黑穗病菌DSM 4500生产和纯化纤维素糖脂的生物工艺研究。","authors":"André D Valkenburg, George M Teke, Eugéne van Rensburg, Robert W M Pott","doi":"10.1007/s00449-025-03127-3","DOIUrl":null,"url":null,"abstract":"<p><p>Cellobiose lipids (CBLs) are a class of glycolipid biosurfactants produced by various fungal strains. These compounds have gained significant interest due to their surface-active and antifungal properties, which are comparable to traditional synthetic surfactants and antimicrobials. Despite their potential applicability in various cosmetic, pharmaceutical, and agricultural formulations, significantly less research has been focused on their production and purification in comparison to other glycolipid biosurfactants, such as mannosylerythritol lipids (MELs) and sophorolipids. Hence, this work proposes the development of a bioprocess that involves the microbial production and high-level chromatographic purification of CBLs from a submerged culture of Ustilago maydis DSM 4500. After a highly purified CBL product was obtained, the factors affecting the production of this glycolipid were investigated. It was demonstrated that U. maydis DSM 4500 produces a specific structural variant of CBLs at a concentration of 1.36 g/L on an optimized the growth medium. Also, it was established that when the C/N ratio was decreased, the CBL titer increased by 2.3-fold. Furthermore, supplementing the culture with ZnSO<sub>4</sub> at a concentration of 0.04 mg/L further increased CBL concentration to 4.95 g/L, representing the highest CBL titer achieved in a single-stage bioprocess to date. This study developed a methodology for utilizing U. maydis as a high-level CBL producer, which could challenge other familiar CBL producers, such as Sporisorium scitamineum and Cryptococcus humicola.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bioprocess development for microbial production and purification of cellobiose lipids by the smut fungus Ustilago maydis DSM 4500.\",\"authors\":\"André D Valkenburg, George M Teke, Eugéne van Rensburg, Robert W M Pott\",\"doi\":\"10.1007/s00449-025-03127-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cellobiose lipids (CBLs) are a class of glycolipid biosurfactants produced by various fungal strains. These compounds have gained significant interest due to their surface-active and antifungal properties, which are comparable to traditional synthetic surfactants and antimicrobials. Despite their potential applicability in various cosmetic, pharmaceutical, and agricultural formulations, significantly less research has been focused on their production and purification in comparison to other glycolipid biosurfactants, such as mannosylerythritol lipids (MELs) and sophorolipids. Hence, this work proposes the development of a bioprocess that involves the microbial production and high-level chromatographic purification of CBLs from a submerged culture of Ustilago maydis DSM 4500. After a highly purified CBL product was obtained, the factors affecting the production of this glycolipid were investigated. It was demonstrated that U. maydis DSM 4500 produces a specific structural variant of CBLs at a concentration of 1.36 g/L on an optimized the growth medium. Also, it was established that when the C/N ratio was decreased, the CBL titer increased by 2.3-fold. Furthermore, supplementing the culture with ZnSO<sub>4</sub> at a concentration of 0.04 mg/L further increased CBL concentration to 4.95 g/L, representing the highest CBL titer achieved in a single-stage bioprocess to date. This study developed a methodology for utilizing U. maydis as a high-level CBL producer, which could challenge other familiar CBL producers, such as Sporisorium scitamineum and Cryptococcus humicola.</p>\",\"PeriodicalId\":9024,\"journal\":{\"name\":\"Bioprocess and Biosystems Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioprocess and Biosystems Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00449-025-03127-3\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioprocess and Biosystems Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00449-025-03127-3","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

纤维二糖脂(CBLs)是一类由多种真菌菌株产生的糖脂生物表面活性剂。这些化合物由于其表面活性和抗真菌特性而获得了极大的兴趣,这些特性可与传统的合成表面活性剂和抗菌剂相媲美。尽管它们在各种化妆品、制药和农业配方中具有潜在的适用性,但与其他糖脂类生物表面活性剂(如甘露糖赤藓糖醇脂类(mel)和槐脂类)相比,对它们的生产和纯化的研究明显较少。因此,这项工作提出了一种生物工艺的发展,包括微生物生产和高水平的层析纯化从黑木耳酵母DSM 4500深层培养的CBLs。在获得高纯度的CBL产品后,研究了影响该糖脂生产的因素。结果表明,在优化后的培养基上,当浓度为1.36 g/L时,U. maydis DSM 4500产生了CBLs的特定结构变体。当碳氮比降低时,CBL滴度提高2.3倍。此外,在培养液中添加0.04 mg/L浓度的ZnSO4进一步将CBL浓度提高到4.95 g/L,这是迄今为止单阶段生物过程中达到的最高CBL滴度。本研究开发了一种利用U. maydis作为高水平CBL生产者的方法,可以挑战其他熟悉的CBL生产者,如藤孢杆菌和隐球菌。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bioprocess development for microbial production and purification of cellobiose lipids by the smut fungus Ustilago maydis DSM 4500.

Cellobiose lipids (CBLs) are a class of glycolipid biosurfactants produced by various fungal strains. These compounds have gained significant interest due to their surface-active and antifungal properties, which are comparable to traditional synthetic surfactants and antimicrobials. Despite their potential applicability in various cosmetic, pharmaceutical, and agricultural formulations, significantly less research has been focused on their production and purification in comparison to other glycolipid biosurfactants, such as mannosylerythritol lipids (MELs) and sophorolipids. Hence, this work proposes the development of a bioprocess that involves the microbial production and high-level chromatographic purification of CBLs from a submerged culture of Ustilago maydis DSM 4500. After a highly purified CBL product was obtained, the factors affecting the production of this glycolipid were investigated. It was demonstrated that U. maydis DSM 4500 produces a specific structural variant of CBLs at a concentration of 1.36 g/L on an optimized the growth medium. Also, it was established that when the C/N ratio was decreased, the CBL titer increased by 2.3-fold. Furthermore, supplementing the culture with ZnSO4 at a concentration of 0.04 mg/L further increased CBL concentration to 4.95 g/L, representing the highest CBL titer achieved in a single-stage bioprocess to date. This study developed a methodology for utilizing U. maydis as a high-level CBL producer, which could challenge other familiar CBL producers, such as Sporisorium scitamineum and Cryptococcus humicola.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioprocess and Biosystems Engineering
Bioprocess and Biosystems Engineering 工程技术-工程:化工
CiteScore
7.90
自引率
2.60%
发文量
147
审稿时长
2.6 months
期刊介绍: Bioprocess and Biosystems Engineering provides an international peer-reviewed forum to facilitate the discussion between engineering and biological science to find efficient solutions in the development and improvement of bioprocesses. The aim of the journal is to focus more attention on the multidisciplinary approaches for integrative bioprocess design. Of special interest are the rational manipulation of biosystems through metabolic engineering techniques to provide new biocatalysts as well as the model based design of bioprocesses (up-stream processing, bioreactor operation and downstream processing) that will lead to new and sustainable production processes. Contributions are targeted at new approaches for rational and evolutive design of cellular systems by taking into account the environment and constraints of technical production processes, integration of recombinant technology and process design, as well as new hybrid intersections such as bioinformatics and process systems engineering. Manuscripts concerning the design, simulation, experimental validation, control, and economic as well as ecological evaluation of novel processes using biosystems or parts thereof (e.g., enzymes, microorganisms, mammalian cells, plant cells, or tissue), their related products, or technical devices are also encouraged. The Editors will consider papers for publication based on novelty, their impact on biotechnological production and their contribution to the advancement of bioprocess and biosystems engineering science. Submission of papers dealing with routine aspects of bioprocess engineering (e.g., routine application of established methodologies, and description of established equipment) are discouraged.
期刊最新文献
Microbial community structure and functional characteristics in a membrane bioreactor used for real rural wastewater treatment. Metabolic engineering of Escherichia coli for enhanced production of p-coumaric acid via L-phenylalanine biosynthesis pathway. Bioprocess development for microbial production and purification of cellobiose lipids by the smut fungus Ustilago maydis DSM 4500. Enhancement of FK520 production in Streptomyces hygroscopicus var. ascomyceticus ATCC 14891 by overexpressing the regulatory gene fkbR2. Environmental bioremediation of pharmaceutical residues: microbial processes and technological innovations: a review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1