{"title":"利用液-液生物聚合物调节剂预测肝癌的预后和药物敏感性。","authors":"Jianhao Li, Han Chen, Lang Bai, Hong Tang","doi":"10.1186/s13062-025-00592-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Liquid-liquid phase separation (LLPS) is essential for the formation of membraneless organelles and significantly influences cellular compartmentalization, chromatin remodeling, and gene regulation. Previous research has highlighted the critical function of liquid-liquid biopolymers in the development of hepatocellular carcinoma (HCC).</p><p><strong>Methods: </strong>This study conducted a comprehensive review of 3,685 liquid-liquid biopolymer regulators, leading to the development of a LLPS related Prognostic Risk Score (LPRS) for HCC through bootstrap-based univariate Cox, Random Survival Forest (RSF), and LASSO analyses. A prognostic nomogram for HCC patients was developed using LPRS and other clinicopathological factors. We utilized SurvSHAP to identify key genes within the LPRS influencing HCC prognosis. To validate our findings, we collected 49 HCC cases along with adjacent tissue samples and confirmed the correlation between DCAF13 expression and HCC progression through qRT-PCR analysis and in vitro experiments.</p><p><strong>Results: </strong>LPRS was established with 8 LLPS-related genes (TXN, CBX2, DCAF13, SLC2A1, KPNA2, FTCD, MAPT, and SAC3D1). Further research indicated that a high LPRS is closely associated with vascular invasion, histological grade (G3-G4), and TNM stage (III-IV) in HCC, concurrently establishing LPRS as an independent risk factor for prognosis. A nomogram that integrates LPRS with TNM staging and patient age markedly improves the predictive accuracy of survival outcomes for HCC patients. Our findings suggest that increased DCAF13 expression in HCC plays a crucial role in cancer progression and angiogenesis. Navitoclax has emerged as a promising treatment for HCC patients with high LPRS levels, offering a novel therapeutic direction by targeting LLPS.</p><p><strong>Conclusion: </strong>We have formulated a novel LPRS model that is capable of accurately predicting the clinical prognosis and drug sensitivity of HCC. DCAF13 might play a pivotal role in malignant progression mediated by LLPS.</p>","PeriodicalId":9164,"journal":{"name":"Biology Direct","volume":"20 1","pages":"2"},"PeriodicalIF":5.7000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11705666/pdf/","citationCount":"0","resultStr":"{\"title\":\"Utilizing liquid-liquid biopolymer regulators to predict the prognosis and drug sensitivity of hepatocellular carcinoma.\",\"authors\":\"Jianhao Li, Han Chen, Lang Bai, Hong Tang\",\"doi\":\"10.1186/s13062-025-00592-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Liquid-liquid phase separation (LLPS) is essential for the formation of membraneless organelles and significantly influences cellular compartmentalization, chromatin remodeling, and gene regulation. Previous research has highlighted the critical function of liquid-liquid biopolymers in the development of hepatocellular carcinoma (HCC).</p><p><strong>Methods: </strong>This study conducted a comprehensive review of 3,685 liquid-liquid biopolymer regulators, leading to the development of a LLPS related Prognostic Risk Score (LPRS) for HCC through bootstrap-based univariate Cox, Random Survival Forest (RSF), and LASSO analyses. A prognostic nomogram for HCC patients was developed using LPRS and other clinicopathological factors. We utilized SurvSHAP to identify key genes within the LPRS influencing HCC prognosis. To validate our findings, we collected 49 HCC cases along with adjacent tissue samples and confirmed the correlation between DCAF13 expression and HCC progression through qRT-PCR analysis and in vitro experiments.</p><p><strong>Results: </strong>LPRS was established with 8 LLPS-related genes (TXN, CBX2, DCAF13, SLC2A1, KPNA2, FTCD, MAPT, and SAC3D1). Further research indicated that a high LPRS is closely associated with vascular invasion, histological grade (G3-G4), and TNM stage (III-IV) in HCC, concurrently establishing LPRS as an independent risk factor for prognosis. A nomogram that integrates LPRS with TNM staging and patient age markedly improves the predictive accuracy of survival outcomes for HCC patients. Our findings suggest that increased DCAF13 expression in HCC plays a crucial role in cancer progression and angiogenesis. Navitoclax has emerged as a promising treatment for HCC patients with high LPRS levels, offering a novel therapeutic direction by targeting LLPS.</p><p><strong>Conclusion: </strong>We have formulated a novel LPRS model that is capable of accurately predicting the clinical prognosis and drug sensitivity of HCC. DCAF13 might play a pivotal role in malignant progression mediated by LLPS.</p>\",\"PeriodicalId\":9164,\"journal\":{\"name\":\"Biology Direct\",\"volume\":\"20 1\",\"pages\":\"2\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11705666/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biology Direct\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13062-025-00592-4\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology Direct","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13062-025-00592-4","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
Utilizing liquid-liquid biopolymer regulators to predict the prognosis and drug sensitivity of hepatocellular carcinoma.
Background: Liquid-liquid phase separation (LLPS) is essential for the formation of membraneless organelles and significantly influences cellular compartmentalization, chromatin remodeling, and gene regulation. Previous research has highlighted the critical function of liquid-liquid biopolymers in the development of hepatocellular carcinoma (HCC).
Methods: This study conducted a comprehensive review of 3,685 liquid-liquid biopolymer regulators, leading to the development of a LLPS related Prognostic Risk Score (LPRS) for HCC through bootstrap-based univariate Cox, Random Survival Forest (RSF), and LASSO analyses. A prognostic nomogram for HCC patients was developed using LPRS and other clinicopathological factors. We utilized SurvSHAP to identify key genes within the LPRS influencing HCC prognosis. To validate our findings, we collected 49 HCC cases along with adjacent tissue samples and confirmed the correlation between DCAF13 expression and HCC progression through qRT-PCR analysis and in vitro experiments.
Results: LPRS was established with 8 LLPS-related genes (TXN, CBX2, DCAF13, SLC2A1, KPNA2, FTCD, MAPT, and SAC3D1). Further research indicated that a high LPRS is closely associated with vascular invasion, histological grade (G3-G4), and TNM stage (III-IV) in HCC, concurrently establishing LPRS as an independent risk factor for prognosis. A nomogram that integrates LPRS with TNM staging and patient age markedly improves the predictive accuracy of survival outcomes for HCC patients. Our findings suggest that increased DCAF13 expression in HCC plays a crucial role in cancer progression and angiogenesis. Navitoclax has emerged as a promising treatment for HCC patients with high LPRS levels, offering a novel therapeutic direction by targeting LLPS.
Conclusion: We have formulated a novel LPRS model that is capable of accurately predicting the clinical prognosis and drug sensitivity of HCC. DCAF13 might play a pivotal role in malignant progression mediated by LLPS.
期刊介绍:
Biology Direct serves the life science research community as an open access, peer-reviewed online journal, providing authors and readers with an alternative to the traditional model of peer review. Biology Direct considers original research articles, hypotheses, comments, discovery notes and reviews in subject areas currently identified as those most conducive to the open review approach, primarily those with a significant non-experimental component.