基于Fisher信息的项目反应理论中Heywood案例的定义

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Entropy Pub Date : 2024-12-14 DOI:10.3390/e26121096
Jay Verkuilen, Peter J Johnson
{"title":"基于Fisher信息的项目反应理论中Heywood案例的定义","authors":"Jay Verkuilen, Peter J Johnson","doi":"10.3390/e26121096","DOIUrl":null,"url":null,"abstract":"<p><p>Heywood cases and other improper solutions occur frequently in latent variable models, e.g., factor analysis, item response theory, latent class analysis, multilevel models, or structural equation models, all of which are models with response variables taken from an exponential family. They have important consequences for scoring with the latent variable model and are indicative of issues in a model, such as poor identification or model misspecification. In the context of the 2PL and 3PL models in IRT, they are more frequently known as Guttman items and are identified by having a discrimination parameter that is deemed excessively large. Other IRT models, such as the newer asymmetric item response theory (AsymIRT) or polytomous IRT models often have parameters that are not easy to interpret directly, so scanning parameter estimates are not necessarily indicative of the presence of problematic values. The graphical examination of the IRF can be useful but is necessarily subjective and highly dependent on choices of graphical defaults. We propose using the derivatives of the IRF, item Fisher information functions, and our proposed Item Fraction of Total Information (IFTI) decomposition metric to bypass the parameters, allowing for the more concrete and consistent identification of Heywood cases. We illustrate the approach by using empirical examples by using AsymIRT and nominal response models.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"26 12","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11675695/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Definition of a Heywood Case in Item Response Theory Based on Fisher Information.\",\"authors\":\"Jay Verkuilen, Peter J Johnson\",\"doi\":\"10.3390/e26121096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Heywood cases and other improper solutions occur frequently in latent variable models, e.g., factor analysis, item response theory, latent class analysis, multilevel models, or structural equation models, all of which are models with response variables taken from an exponential family. They have important consequences for scoring with the latent variable model and are indicative of issues in a model, such as poor identification or model misspecification. In the context of the 2PL and 3PL models in IRT, they are more frequently known as Guttman items and are identified by having a discrimination parameter that is deemed excessively large. Other IRT models, such as the newer asymmetric item response theory (AsymIRT) or polytomous IRT models often have parameters that are not easy to interpret directly, so scanning parameter estimates are not necessarily indicative of the presence of problematic values. The graphical examination of the IRF can be useful but is necessarily subjective and highly dependent on choices of graphical defaults. We propose using the derivatives of the IRF, item Fisher information functions, and our proposed Item Fraction of Total Information (IFTI) decomposition metric to bypass the parameters, allowing for the more concrete and consistent identification of Heywood cases. We illustrate the approach by using empirical examples by using AsymIRT and nominal response models.</p>\",\"PeriodicalId\":11694,\"journal\":{\"name\":\"Entropy\",\"volume\":\"26 12\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11675695/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entropy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/e26121096\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e26121096","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在潜在变量模型中,如因子分析、项目反应理论、潜在类分析、多层模型或结构方程模型等,往往会出现Heywood案例和其他不正确的解,这些模型的响应变量都取自指数族。它们对潜在变量模型的评分有重要的影响,并且表明了模型中的问题,例如较差的识别或模型错误说明。在IRT中的2PL和3PL模型的背景下,它们更常被称为Guttman项目,并通过具有被认为过大的判别参数来识别。其他IRT模型,如较新的非对称项响应理论(AsymIRT)或多同质IRT模型,通常具有不容易直接解释的参数,因此扫描参数估计不一定指示存在问题值。IRF的图形检查可能是有用的,但必然是主观的,并且高度依赖于图形默认值的选择。我们建议使用IRF的导数、项目Fisher信息函数和我们提出的项目总信息分数(IFTI)分解度量来绕过这些参数,从而允许对Heywood案例进行更具体和一致的识别。我们通过使用AsymIRT和名义响应模型的经验例子来说明这种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Definition of a Heywood Case in Item Response Theory Based on Fisher Information.

Heywood cases and other improper solutions occur frequently in latent variable models, e.g., factor analysis, item response theory, latent class analysis, multilevel models, or structural equation models, all of which are models with response variables taken from an exponential family. They have important consequences for scoring with the latent variable model and are indicative of issues in a model, such as poor identification or model misspecification. In the context of the 2PL and 3PL models in IRT, they are more frequently known as Guttman items and are identified by having a discrimination parameter that is deemed excessively large. Other IRT models, such as the newer asymmetric item response theory (AsymIRT) or polytomous IRT models often have parameters that are not easy to interpret directly, so scanning parameter estimates are not necessarily indicative of the presence of problematic values. The graphical examination of the IRF can be useful but is necessarily subjective and highly dependent on choices of graphical defaults. We propose using the derivatives of the IRF, item Fisher information functions, and our proposed Item Fraction of Total Information (IFTI) decomposition metric to bypass the parameters, allowing for the more concrete and consistent identification of Heywood cases. We illustrate the approach by using empirical examples by using AsymIRT and nominal response models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
期刊最新文献
A Resource-Efficient Multi-Entropy Fusion Method and Its Application for EEG-Based Emotion Recognition. Discontinuous Structural Transitions in Fluids with Competing Interactions. Maximizing Free Energy Gain. Nonadditive Entropies and Nonextensive Statistical Mechanics. Novel Ensemble Approach with Incremental Information Level and Improved Evidence Theory for Attribute Reduction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1