利用广义估计方程模型,通过HRV、复杂性测量和心率不对称进行睡眠阶段分类。

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Entropy Pub Date : 2024-12-16 DOI:10.3390/e26121100
Bartosz Biczuk, Sebastian Żurek, Szymon Jurga, Elżbieta Turska, Przemysław Guzik, Jarosław Piskorski
{"title":"利用广义估计方程模型,通过HRV、复杂性测量和心率不对称进行睡眠阶段分类。","authors":"Bartosz Biczuk, Sebastian Żurek, Szymon Jurga, Elżbieta Turska, Przemysław Guzik, Jarosław Piskorski","doi":"10.3390/e26121100","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates whether heart rate asymmetry (HRA) parameters offer insights into sleep stages beyond those provided by conventional heart rate variability (HRV) and complexity measures. Utilizing 31 polysomnographic recordings, we focused exclusively on electrocardiogram (ECG) data, specifically the RR interval time series, to explore heart rate dynamics associated with different sleep stages. Employing both statistical techniques and machine learning models, with the Generalized Estimating Equation model as the foundational approach, we assessed the effectiveness of HRA in identifying and differentiating sleep stages and transitions. The models including asymmetric variables for detecting deep sleep stages, N2 and N3, achieved AUCs of 0.85 and 0.89, respectively, those for transitions N2-R, R-N2, i.e., falling in and out of REM sleep, achieved AUCs of 0.85 and 0.80, and those for W-N1, i.e., falling asleep, an AUC of 0.83. All these models were highly statistically significant. The findings demonstrate that HRA parameters provide significant, independent information about sleep stages that is not captured by HRV and complexity measures alone. This additional insight into sleep physiology potentially leads to a better understanding of hearth rhythm during sleep and devising more precise diagnostic tools, including cheap portable devices, for identifying sleep-related disorders.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"26 12","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11675681/pdf/","citationCount":"0","resultStr":"{\"title\":\"Sleep Stage Classification Through HRV, Complexity Measures, and Heart Rate Asymmetry Using Generalized Estimating Equations Models.\",\"authors\":\"Bartosz Biczuk, Sebastian Żurek, Szymon Jurga, Elżbieta Turska, Przemysław Guzik, Jarosław Piskorski\",\"doi\":\"10.3390/e26121100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study investigates whether heart rate asymmetry (HRA) parameters offer insights into sleep stages beyond those provided by conventional heart rate variability (HRV) and complexity measures. Utilizing 31 polysomnographic recordings, we focused exclusively on electrocardiogram (ECG) data, specifically the RR interval time series, to explore heart rate dynamics associated with different sleep stages. Employing both statistical techniques and machine learning models, with the Generalized Estimating Equation model as the foundational approach, we assessed the effectiveness of HRA in identifying and differentiating sleep stages and transitions. The models including asymmetric variables for detecting deep sleep stages, N2 and N3, achieved AUCs of 0.85 and 0.89, respectively, those for transitions N2-R, R-N2, i.e., falling in and out of REM sleep, achieved AUCs of 0.85 and 0.80, and those for W-N1, i.e., falling asleep, an AUC of 0.83. All these models were highly statistically significant. The findings demonstrate that HRA parameters provide significant, independent information about sleep stages that is not captured by HRV and complexity measures alone. This additional insight into sleep physiology potentially leads to a better understanding of hearth rhythm during sleep and devising more precise diagnostic tools, including cheap portable devices, for identifying sleep-related disorders.</p>\",\"PeriodicalId\":11694,\"journal\":{\"name\":\"Entropy\",\"volume\":\"26 12\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11675681/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entropy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/e26121100\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e26121100","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

这项研究调查了心率不对称(HRA)参数是否比传统的心率变异性(HRV)和复杂性测量方法更能深入了解睡眠阶段。利用31个多导睡眠图记录,我们专注于心电图(ECG)数据,特别是RR间隔时间序列,以探索与不同睡眠阶段相关的心率动态。采用统计技术和机器学习模型,以广义估计方程模型为基础方法,我们评估了HRA在识别和区分睡眠阶段和过渡方面的有效性。包含深度睡眠阶段N2和N3的非对称变量模型的AUC分别为0.85和0.89,N2- r和R-N2过渡阶段(即进入和退出REM睡眠)的AUC分别为0.85和0.80,W-N1阶段(即进入睡眠)的AUC为0.83。所有这些模型都具有高度统计显著性。研究结果表明,HRA参数提供了关于睡眠阶段的重要的、独立的信息,而HRV和复杂性测量单独无法捕捉到这些信息。这种对睡眠生理学的进一步了解可能会使我们更好地了解睡眠中的心脏节律,并设计出更精确的诊断工具,包括廉价的便携式设备,用于识别与睡眠相关的疾病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sleep Stage Classification Through HRV, Complexity Measures, and Heart Rate Asymmetry Using Generalized Estimating Equations Models.

This study investigates whether heart rate asymmetry (HRA) parameters offer insights into sleep stages beyond those provided by conventional heart rate variability (HRV) and complexity measures. Utilizing 31 polysomnographic recordings, we focused exclusively on electrocardiogram (ECG) data, specifically the RR interval time series, to explore heart rate dynamics associated with different sleep stages. Employing both statistical techniques and machine learning models, with the Generalized Estimating Equation model as the foundational approach, we assessed the effectiveness of HRA in identifying and differentiating sleep stages and transitions. The models including asymmetric variables for detecting deep sleep stages, N2 and N3, achieved AUCs of 0.85 and 0.89, respectively, those for transitions N2-R, R-N2, i.e., falling in and out of REM sleep, achieved AUCs of 0.85 and 0.80, and those for W-N1, i.e., falling asleep, an AUC of 0.83. All these models were highly statistically significant. The findings demonstrate that HRA parameters provide significant, independent information about sleep stages that is not captured by HRV and complexity measures alone. This additional insight into sleep physiology potentially leads to a better understanding of hearth rhythm during sleep and devising more precise diagnostic tools, including cheap portable devices, for identifying sleep-related disorders.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
期刊最新文献
A Resource-Efficient Multi-Entropy Fusion Method and Its Application for EEG-Based Emotion Recognition. Discontinuous Structural Transitions in Fluids with Competing Interactions. Maximizing Free Energy Gain. Nonadditive Entropies and Nonextensive Statistical Mechanics. Novel Ensemble Approach with Incremental Information Level and Improved Evidence Theory for Attribute Reduction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1