噪声环境下基于多量子比特纠缠态的非对称循环控制量子隐形传态。

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Entropy Pub Date : 2024-12-18 DOI:10.3390/e26121108
Hanxuan Zhou
{"title":"噪声环境下基于多量子比特纠缠态的非对称循环控制量子隐形传态。","authors":"Hanxuan Zhou","doi":"10.3390/e26121108","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, by using eleven entangled quantum states as a quantum channel, we propose a cyclic and asymmetric novel protocol for four participants in which both Alice and Bob can transmit two-qubit states, and Charlie can transmit three-qubit states with the assistance of the supervisor David, who provides a guarantee for communication security. This protocol is based on GHZ state measurement (GHZ), single-qubit measurement (SM), and unitary operations (UO) to implement the communication task. The analysis demonstrates that the success probability of the proposed protocol can reach 100%. Furthermore, considering that in actual production environments, it is difficult to avoid the occurrence of noise in quantum channels, this paper also analyzes the changes in fidelity in four types of noisy scenarios: bit-flip noise, phase-flip noise, bit-phase-flip noise, and depolarizing noise. Showing that communication quality only depends on the amplitude parameters of the initial state and decoherence rate. Additionally, we give a comparison with previous similar schemes in terms of achieved method and intrinsic efficiency, which illustrates the superiority of our protocol. Finally, in response to the vulnerability of quantum channels to external attacks, a security analysis was conducted, and corresponding defensive measures were proposed.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"26 12","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11675232/pdf/","citationCount":"0","resultStr":"{\"title\":\"Asymmetric Cyclic Controlled Quantum Teleportation via Multiple-Qubit Entangled State in a Noisy Environment.\",\"authors\":\"Hanxuan Zhou\",\"doi\":\"10.3390/e26121108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, by using eleven entangled quantum states as a quantum channel, we propose a cyclic and asymmetric novel protocol for four participants in which both Alice and Bob can transmit two-qubit states, and Charlie can transmit three-qubit states with the assistance of the supervisor David, who provides a guarantee for communication security. This protocol is based on GHZ state measurement (GHZ), single-qubit measurement (SM), and unitary operations (UO) to implement the communication task. The analysis demonstrates that the success probability of the proposed protocol can reach 100%. Furthermore, considering that in actual production environments, it is difficult to avoid the occurrence of noise in quantum channels, this paper also analyzes the changes in fidelity in four types of noisy scenarios: bit-flip noise, phase-flip noise, bit-phase-flip noise, and depolarizing noise. Showing that communication quality only depends on the amplitude parameters of the initial state and decoherence rate. Additionally, we give a comparison with previous similar schemes in terms of achieved method and intrinsic efficiency, which illustrates the superiority of our protocol. Finally, in response to the vulnerability of quantum channels to external attacks, a security analysis was conducted, and corresponding defensive measures were proposed.</p>\",\"PeriodicalId\":11694,\"journal\":{\"name\":\"Entropy\",\"volume\":\"26 12\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11675232/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entropy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/e26121108\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e26121108","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文利用11个纠缠量子态作为量子信道,提出了一种四人参与的循环非对称新协议,其中Alice和Bob可以传输两个量子比特状态,Charlie可以在监督者David的协助下传输三个量子比特状态,为通信安全提供了保证。该协议基于GHZ状态测量(GHZ)、单量子位测量(SM)和统一操作(UO)来实现通信任务。分析表明,该协议的成功率可达100%。此外,考虑到在实际生产环境中,量子信道中难以避免噪声的发生,本文还分析了比特翻转噪声、相位翻转噪声、比特相位翻转噪声和去极化噪声四种噪声场景下保真度的变化。表明通信质量仅取决于初始状态的幅度参数和退相干率。此外,我们还在实现方法和内在效率方面与以往的类似方案进行了比较,说明了我们协议的优越性。最后,针对量子通道对外部攻击的脆弱性进行了安全分析,并提出了相应的防御措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Asymmetric Cyclic Controlled Quantum Teleportation via Multiple-Qubit Entangled State in a Noisy Environment.

In this paper, by using eleven entangled quantum states as a quantum channel, we propose a cyclic and asymmetric novel protocol for four participants in which both Alice and Bob can transmit two-qubit states, and Charlie can transmit three-qubit states with the assistance of the supervisor David, who provides a guarantee for communication security. This protocol is based on GHZ state measurement (GHZ), single-qubit measurement (SM), and unitary operations (UO) to implement the communication task. The analysis demonstrates that the success probability of the proposed protocol can reach 100%. Furthermore, considering that in actual production environments, it is difficult to avoid the occurrence of noise in quantum channels, this paper also analyzes the changes in fidelity in four types of noisy scenarios: bit-flip noise, phase-flip noise, bit-phase-flip noise, and depolarizing noise. Showing that communication quality only depends on the amplitude parameters of the initial state and decoherence rate. Additionally, we give a comparison with previous similar schemes in terms of achieved method and intrinsic efficiency, which illustrates the superiority of our protocol. Finally, in response to the vulnerability of quantum channels to external attacks, a security analysis was conducted, and corresponding defensive measures were proposed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
期刊最新文献
A Resource-Efficient Multi-Entropy Fusion Method and Its Application for EEG-Based Emotion Recognition. Discontinuous Structural Transitions in Fluids with Competing Interactions. Maximizing Free Energy Gain. Nonadditive Entropies and Nonextensive Statistical Mechanics. Novel Ensemble Approach with Incremental Information Level and Improved Evidence Theory for Attribute Reduction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1