泪液中角蛋白的质谱检测。

IF 3 2区 医学 Q1 OPHTHALMOLOGY Experimental eye research Pub Date : 2025-01-04 DOI:10.1016/j.exer.2025.110231
Saleh Ahmed, Jeremy Altman, Garrett Jones, Tae Jin Lee, Danielle M Robertson, Wenbo Zhi, Shruti Sharma, Ashok Sharma
{"title":"泪液中角蛋白的质谱检测。","authors":"Saleh Ahmed, Jeremy Altman, Garrett Jones, Tae Jin Lee, Danielle M Robertson, Wenbo Zhi, Shruti Sharma, Ashok Sharma","doi":"10.1016/j.exer.2025.110231","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Keratin contamination is a common problem in mass spectrometry proteomic analyses, particularly in bottom-up mass spectrometry. The purpose of this study was to determine the protein contaminants introduced during the proteomic analysis of tear fluid.</p><p><strong>Methods: </strong>Human tear fluid samples were collected using Schirmer strips. Proteomic analyses were performed using liquid chromatography-tandem mass spectrometry (LC-MS/MS) on blank Schirmer strips and tear fluid samples, with empty vials serving as controls for assessing environmental contaminant proteins.</p><p><strong>Results: </strong>We detected 26 contaminant proteins (18 keratins and 8 non-keratins). 98.2% of the total protein contamination can be attributed to the 9 keratins, including KRT10 (23.6%), KRT1 (23.5%), KRT2 (15.7%), KRT14 (7.6%), KRT16 (7.0%), KRT5 (6.1%), KRT9 (5.9%), KRT6B (4.6%), and KRT6A (4.3%). A comparison to the proteomic profile of blank Schirmer strips and controls (empty vials) found a strong correlation (R<sup>2</sup> = 0.9753), indicating that these proteins were not from the blank Schirmer strips but are environmental contaminants. On the other hand, several keratins including KRT19, KRT13, KRT4, KRT7, KRT15, KRT8 and KRT18 were present in tear fluid, but either not detected or were negligible in blank strips. Another set of keratins, including KRT5, KRT6A, KRT14, KRT16, and KRT17, were identified as components of tear fluid as well as environmental contaminants.</p><p><strong>Conclusions: </strong>This study revealed nine major contaminant keratins in the mass spectrometry analysis. Several other keratins were identified as constituents of tear fluid. Background subtraction is necessary for the accurate analysis of tear fluid using mass spectrometry.</p>","PeriodicalId":12177,"journal":{"name":"Experimental eye research","volume":"251 ","pages":"110231"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mass spectrometric detection of keratins in tear fluid.\",\"authors\":\"Saleh Ahmed, Jeremy Altman, Garrett Jones, Tae Jin Lee, Danielle M Robertson, Wenbo Zhi, Shruti Sharma, Ashok Sharma\",\"doi\":\"10.1016/j.exer.2025.110231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Keratin contamination is a common problem in mass spectrometry proteomic analyses, particularly in bottom-up mass spectrometry. The purpose of this study was to determine the protein contaminants introduced during the proteomic analysis of tear fluid.</p><p><strong>Methods: </strong>Human tear fluid samples were collected using Schirmer strips. Proteomic analyses were performed using liquid chromatography-tandem mass spectrometry (LC-MS/MS) on blank Schirmer strips and tear fluid samples, with empty vials serving as controls for assessing environmental contaminant proteins.</p><p><strong>Results: </strong>We detected 26 contaminant proteins (18 keratins and 8 non-keratins). 98.2% of the total protein contamination can be attributed to the 9 keratins, including KRT10 (23.6%), KRT1 (23.5%), KRT2 (15.7%), KRT14 (7.6%), KRT16 (7.0%), KRT5 (6.1%), KRT9 (5.9%), KRT6B (4.6%), and KRT6A (4.3%). A comparison to the proteomic profile of blank Schirmer strips and controls (empty vials) found a strong correlation (R<sup>2</sup> = 0.9753), indicating that these proteins were not from the blank Schirmer strips but are environmental contaminants. On the other hand, several keratins including KRT19, KRT13, KRT4, KRT7, KRT15, KRT8 and KRT18 were present in tear fluid, but either not detected or were negligible in blank strips. Another set of keratins, including KRT5, KRT6A, KRT14, KRT16, and KRT17, were identified as components of tear fluid as well as environmental contaminants.</p><p><strong>Conclusions: </strong>This study revealed nine major contaminant keratins in the mass spectrometry analysis. Several other keratins were identified as constituents of tear fluid. Background subtraction is necessary for the accurate analysis of tear fluid using mass spectrometry.</p>\",\"PeriodicalId\":12177,\"journal\":{\"name\":\"Experimental eye research\",\"volume\":\"251 \",\"pages\":\"110231\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental eye research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.exer.2025.110231\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental eye research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.exer.2025.110231","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:角蛋白污染是质谱分析中常见的问题,特别是在自下而上的质谱分析中。本研究的目的是确定泪液蛋白质组学分析过程中引入的蛋白质污染物。方法:采用Schirmer试纸采集人泪液。蛋白质组学分析采用液相色谱-串联质谱(LC-MS/MS)对空白席尔默条带和泪液样品进行分析,空瓶作为评估环境污染物蛋白质的对照。结果:共检出26种污染蛋白(角蛋白18种,非角蛋白8种)。总蛋白污染的98.2%可归因于9种角蛋白,包括KRT10(23.6%)、KRT1(23.5%)、KRT2(15.7%)、KRT14(7.6%)、KRT16(7.0%)、KRT5(6.1%)、KRT9(5.9%)、KRT6B(4.6%)和KRT6A(4.3%)。空白Schirmer条带与空白对照(空瓶)的蛋白质组学分析结果显示,两者具有很强的相关性(R2 = 0.9753),表明这些蛋白质不是来自空白Schirmer条带,而是环境污染物。另一方面,泪液中存在KRT19、KRT13、KRT4、KRT7、KRT15、KRT8和KRT18等几种角蛋白,但在空白条中未检测到或可忽略不计。另一组角蛋白,包括KRT5、KRT6A、KRT14、KRT16和KRT17,被确定为泪液成分以及环境污染物。结论:本研究在质谱分析中揭示了9种主要的污染物角蛋白。其他几个角蛋白被确定为泪液的成分。背景减法是使用质谱法准确分析泪液的必要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mass spectrometric detection of keratins in tear fluid.

Purpose: Keratin contamination is a common problem in mass spectrometry proteomic analyses, particularly in bottom-up mass spectrometry. The purpose of this study was to determine the protein contaminants introduced during the proteomic analysis of tear fluid.

Methods: Human tear fluid samples were collected using Schirmer strips. Proteomic analyses were performed using liquid chromatography-tandem mass spectrometry (LC-MS/MS) on blank Schirmer strips and tear fluid samples, with empty vials serving as controls for assessing environmental contaminant proteins.

Results: We detected 26 contaminant proteins (18 keratins and 8 non-keratins). 98.2% of the total protein contamination can be attributed to the 9 keratins, including KRT10 (23.6%), KRT1 (23.5%), KRT2 (15.7%), KRT14 (7.6%), KRT16 (7.0%), KRT5 (6.1%), KRT9 (5.9%), KRT6B (4.6%), and KRT6A (4.3%). A comparison to the proteomic profile of blank Schirmer strips and controls (empty vials) found a strong correlation (R2 = 0.9753), indicating that these proteins were not from the blank Schirmer strips but are environmental contaminants. On the other hand, several keratins including KRT19, KRT13, KRT4, KRT7, KRT15, KRT8 and KRT18 were present in tear fluid, but either not detected or were negligible in blank strips. Another set of keratins, including KRT5, KRT6A, KRT14, KRT16, and KRT17, were identified as components of tear fluid as well as environmental contaminants.

Conclusions: This study revealed nine major contaminant keratins in the mass spectrometry analysis. Several other keratins were identified as constituents of tear fluid. Background subtraction is necessary for the accurate analysis of tear fluid using mass spectrometry.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Experimental eye research
Experimental eye research 医学-眼科学
CiteScore
6.80
自引率
5.90%
发文量
323
审稿时长
66 days
期刊介绍: The primary goal of Experimental Eye Research is to publish original research papers on all aspects of experimental biology of the eye and ocular tissues that seek to define the mechanisms of normal function and/or disease. Studies of ocular tissues that encompass the disciplines of cell biology, developmental biology, genetics, molecular biology, physiology, biochemistry, biophysics, immunology or microbiology are most welcomed. Manuscripts that are purely clinical or in a surgical area of ophthalmology are not appropriate for submission to Experimental Eye Research and if received will be returned without review.
期刊最新文献
Establishment and evaluation of rabbit model for corneal ectasia by photorefractive keratectomy. Single-cell transcriptomic profiling of rat iridocorneal angle at perinatal stages: revisiting the development of periocular mesenchyme. Priming and release of cytokine IL-1β in microglial cells from the retina. Screening of a retinal-targeting Adeno-Associated Virus (AAV) via DNA shuffling. TAT-N24 enhances retinal ganglion cell survival by suppressing ZBP1-PANoptosome-mediated PANoptosis in an acute glaucoma mouse model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1