{"title":"诱发反应脑机接口的贝叶斯动态停止方法。","authors":"Sara Ahmadi, Peter Desain, Jordy Thielen","doi":"10.3389/fnhum.2024.1437965","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>As brain-computer interfacing (BCI) systems transition fromassistive technology to more diverse applications, their speed, reliability, and user experience become increasingly important. Dynamic stopping methods enhance BCI system speed by deciding at any moment whether to output a result or wait for more information. Such approach leverages trial variance, allowing good trials to be detected earlier, thereby speeding up the process without significantly compromising accuracy. Existing dynamic stopping algorithms typically optimize measures such as symbols per minute (SPM) and information transfer rate (ITR). However, these metrics may not accurately reflect system performance for specific applications or user types. Moreover, many methods depend on arbitrary thresholds or parameters that require extensive training data.</p><p><strong>Methods: </strong>We propose a model-based approach that takes advantage of the analytical knowledge that we have about the underlying classification model. By using a risk minimization approach, our model allows precise control over the types of errors and the balance between precision and speed. This adaptability makes it ideal for customizing BCI systems to meet the diverse needs of various applications.</p><p><strong>Results and discussion: </strong>We validate our proposed method on a publicly available dataset, comparing it with established static and dynamic stopping methods. Our results demonstrate that our approach offers a broad range of accuracy-speed trade-offs and achieves higher precision than baseline stopping methods.</p>","PeriodicalId":12536,"journal":{"name":"Frontiers in Human Neuroscience","volume":"18 ","pages":"1437965"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11703970/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Bayesian dynamic stopping method for evoked response brain-computer interfacing.\",\"authors\":\"Sara Ahmadi, Peter Desain, Jordy Thielen\",\"doi\":\"10.3389/fnhum.2024.1437965\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>As brain-computer interfacing (BCI) systems transition fromassistive technology to more diverse applications, their speed, reliability, and user experience become increasingly important. Dynamic stopping methods enhance BCI system speed by deciding at any moment whether to output a result or wait for more information. Such approach leverages trial variance, allowing good trials to be detected earlier, thereby speeding up the process without significantly compromising accuracy. Existing dynamic stopping algorithms typically optimize measures such as symbols per minute (SPM) and information transfer rate (ITR). However, these metrics may not accurately reflect system performance for specific applications or user types. Moreover, many methods depend on arbitrary thresholds or parameters that require extensive training data.</p><p><strong>Methods: </strong>We propose a model-based approach that takes advantage of the analytical knowledge that we have about the underlying classification model. By using a risk minimization approach, our model allows precise control over the types of errors and the balance between precision and speed. This adaptability makes it ideal for customizing BCI systems to meet the diverse needs of various applications.</p><p><strong>Results and discussion: </strong>We validate our proposed method on a publicly available dataset, comparing it with established static and dynamic stopping methods. Our results demonstrate that our approach offers a broad range of accuracy-speed trade-offs and achieves higher precision than baseline stopping methods.</p>\",\"PeriodicalId\":12536,\"journal\":{\"name\":\"Frontiers in Human Neuroscience\",\"volume\":\"18 \",\"pages\":\"1437965\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11703970/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Human Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fnhum.2024.1437965\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Human Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnhum.2024.1437965","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
A Bayesian dynamic stopping method for evoked response brain-computer interfacing.
Introduction: As brain-computer interfacing (BCI) systems transition fromassistive technology to more diverse applications, their speed, reliability, and user experience become increasingly important. Dynamic stopping methods enhance BCI system speed by deciding at any moment whether to output a result or wait for more information. Such approach leverages trial variance, allowing good trials to be detected earlier, thereby speeding up the process without significantly compromising accuracy. Existing dynamic stopping algorithms typically optimize measures such as symbols per minute (SPM) and information transfer rate (ITR). However, these metrics may not accurately reflect system performance for specific applications or user types. Moreover, many methods depend on arbitrary thresholds or parameters that require extensive training data.
Methods: We propose a model-based approach that takes advantage of the analytical knowledge that we have about the underlying classification model. By using a risk minimization approach, our model allows precise control over the types of errors and the balance between precision and speed. This adaptability makes it ideal for customizing BCI systems to meet the diverse needs of various applications.
Results and discussion: We validate our proposed method on a publicly available dataset, comparing it with established static and dynamic stopping methods. Our results demonstrate that our approach offers a broad range of accuracy-speed trade-offs and achieves higher precision than baseline stopping methods.
期刊介绍:
Frontiers in Human Neuroscience is a first-tier electronic journal devoted to understanding the brain mechanisms supporting cognitive and social behavior in humans, and how these mechanisms might be altered in disease states. The last 25 years have seen an explosive growth in both the methods and the theoretical constructs available to study the human brain. Advances in electrophysiological, neuroimaging, neuropsychological, psychophysical, neuropharmacological and computational approaches have provided key insights into the mechanisms of a broad range of human behaviors in both health and disease. Work in human neuroscience ranges from the cognitive domain, including areas such as memory, attention, language and perception to the social domain, with this last subject addressing topics, such as interpersonal interactions, social discourse and emotional regulation. How these processes unfold during development, mature in adulthood and often decline in aging, and how they are altered in a host of developmental, neurological and psychiatric disorders, has become increasingly amenable to human neuroscience research approaches. Work in human neuroscience has influenced many areas of inquiry ranging from social and cognitive psychology to economics, law and public policy. Accordingly, our journal will provide a forum for human research spanning all areas of human cognitive, social, developmental and translational neuroscience using any research approach.