Iacopo Passeri, Lisa Cangioli, Marco Fondi, Alessio Mengoni, Camilla Fagorzi
{"title":"固氮细菌Sinorhizobium meliloti多基因组复杂表观遗传全景图。","authors":"Iacopo Passeri, Lisa Cangioli, Marco Fondi, Alessio Mengoni, Camilla Fagorzi","doi":"10.1093/gbe/evae245","DOIUrl":null,"url":null,"abstract":"<p><p>In prokaryotes, DNA methylation plays roles in DNA repair, gene expression, cell cycle progression, and immune recognition of foreign DNA. Genome-wide methylation patterns can vary between strains, influencing phenotype, and gene transfer. However, broader evolutionary studies on bacterial epigenomic variation remain limited. In this study, we conducted an epigenomic analysis using single-molecule real-time sequencing on 21 strains of Sinorhizobium meliloti, a facultative plant nitrogen-fixing alphaproteobacterium. This species is notable for its multipartite genome structure, consisting of a chromosome, chromid, and megaplasmid, leading to significant genomic and phenotypic diversity. We identified 16 palindromic and nonpalindromic methylated DNA motifs, including N4-methylcytosine and N6-methyladenine modifications, and analyzed their associated methyltransferases. Some motifs were methylated across all strains, forming a core set of epigenomic signatures, while others exhibited variable methylation frequencies, indicating a dispensable (shell) epigenome. Additionally, we observed differences in methylation frequency between replicons and within coding sequences versus regulatory regions, suggesting that methylation patterns may reflect multipartite genome evolution and influence gene regulation. Overall, our findings reveal extensive epigenomic diversity in S. meliloti, with complex epigenomic signatures varying across replicons and genomic regions. These results enhance our understanding of multipartite genome evolution and highlight the potential role of epigenomic diversity in phenotypic variation.</p>","PeriodicalId":12779,"journal":{"name":"Genome Biology and Evolution","volume":"17 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11711589/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Complex Epigenetic Panorama in the Multipartite Genome of the Nitrogen-Fixing Bacterium Sinorhizobium meliloti.\",\"authors\":\"Iacopo Passeri, Lisa Cangioli, Marco Fondi, Alessio Mengoni, Camilla Fagorzi\",\"doi\":\"10.1093/gbe/evae245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In prokaryotes, DNA methylation plays roles in DNA repair, gene expression, cell cycle progression, and immune recognition of foreign DNA. Genome-wide methylation patterns can vary between strains, influencing phenotype, and gene transfer. However, broader evolutionary studies on bacterial epigenomic variation remain limited. In this study, we conducted an epigenomic analysis using single-molecule real-time sequencing on 21 strains of Sinorhizobium meliloti, a facultative plant nitrogen-fixing alphaproteobacterium. This species is notable for its multipartite genome structure, consisting of a chromosome, chromid, and megaplasmid, leading to significant genomic and phenotypic diversity. We identified 16 palindromic and nonpalindromic methylated DNA motifs, including N4-methylcytosine and N6-methyladenine modifications, and analyzed their associated methyltransferases. Some motifs were methylated across all strains, forming a core set of epigenomic signatures, while others exhibited variable methylation frequencies, indicating a dispensable (shell) epigenome. Additionally, we observed differences in methylation frequency between replicons and within coding sequences versus regulatory regions, suggesting that methylation patterns may reflect multipartite genome evolution and influence gene regulation. Overall, our findings reveal extensive epigenomic diversity in S. meliloti, with complex epigenomic signatures varying across replicons and genomic regions. These results enhance our understanding of multipartite genome evolution and highlight the potential role of epigenomic diversity in phenotypic variation.</p>\",\"PeriodicalId\":12779,\"journal\":{\"name\":\"Genome Biology and Evolution\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11711589/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome Biology and Evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/gbe/evae245\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"EVOLUTIONARY BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology and Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/gbe/evae245","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
The Complex Epigenetic Panorama in the Multipartite Genome of the Nitrogen-Fixing Bacterium Sinorhizobium meliloti.
In prokaryotes, DNA methylation plays roles in DNA repair, gene expression, cell cycle progression, and immune recognition of foreign DNA. Genome-wide methylation patterns can vary between strains, influencing phenotype, and gene transfer. However, broader evolutionary studies on bacterial epigenomic variation remain limited. In this study, we conducted an epigenomic analysis using single-molecule real-time sequencing on 21 strains of Sinorhizobium meliloti, a facultative plant nitrogen-fixing alphaproteobacterium. This species is notable for its multipartite genome structure, consisting of a chromosome, chromid, and megaplasmid, leading to significant genomic and phenotypic diversity. We identified 16 palindromic and nonpalindromic methylated DNA motifs, including N4-methylcytosine and N6-methyladenine modifications, and analyzed their associated methyltransferases. Some motifs were methylated across all strains, forming a core set of epigenomic signatures, while others exhibited variable methylation frequencies, indicating a dispensable (shell) epigenome. Additionally, we observed differences in methylation frequency between replicons and within coding sequences versus regulatory regions, suggesting that methylation patterns may reflect multipartite genome evolution and influence gene regulation. Overall, our findings reveal extensive epigenomic diversity in S. meliloti, with complex epigenomic signatures varying across replicons and genomic regions. These results enhance our understanding of multipartite genome evolution and highlight the potential role of epigenomic diversity in phenotypic variation.
期刊介绍:
About the journal
Genome Biology and Evolution (GBE) publishes leading original research at the interface between evolutionary biology and genomics. Papers considered for publication report novel evolutionary findings that concern natural genome diversity, population genomics, the structure, function, organisation and expression of genomes, comparative genomics, proteomics, and environmental genomic interactions. Major evolutionary insights from the fields of computational biology, structural biology, developmental biology, and cell biology are also considered, as are theoretical advances in the field of genome evolution. GBE’s scope embraces genome-wide evolutionary investigations at all taxonomic levels and for all forms of life — within populations or across domains. Its aims are to further the understanding of genomes in their evolutionary context and further the understanding of evolution from a genome-wide perspective.