固氮细菌Sinorhizobium meliloti多基因组复杂表观遗传全景图。

IF 3.2 2区 生物学 Q2 EVOLUTIONARY BIOLOGY Genome Biology and Evolution Pub Date : 2025-01-06 DOI:10.1093/gbe/evae245
Iacopo Passeri, Lisa Cangioli, Marco Fondi, Alessio Mengoni, Camilla Fagorzi
{"title":"固氮细菌Sinorhizobium meliloti多基因组复杂表观遗传全景图。","authors":"Iacopo Passeri, Lisa Cangioli, Marco Fondi, Alessio Mengoni, Camilla Fagorzi","doi":"10.1093/gbe/evae245","DOIUrl":null,"url":null,"abstract":"<p><p>In prokaryotes, DNA methylation plays roles in DNA repair, gene expression, cell cycle progression, and immune recognition of foreign DNA. Genome-wide methylation patterns can vary between strains, influencing phenotype, and gene transfer. However, broader evolutionary studies on bacterial epigenomic variation remain limited. In this study, we conducted an epigenomic analysis using single-molecule real-time sequencing on 21 strains of Sinorhizobium meliloti, a facultative plant nitrogen-fixing alphaproteobacterium. This species is notable for its multipartite genome structure, consisting of a chromosome, chromid, and megaplasmid, leading to significant genomic and phenotypic diversity. We identified 16 palindromic and nonpalindromic methylated DNA motifs, including N4-methylcytosine and N6-methyladenine modifications, and analyzed their associated methyltransferases. Some motifs were methylated across all strains, forming a core set of epigenomic signatures, while others exhibited variable methylation frequencies, indicating a dispensable (shell) epigenome. Additionally, we observed differences in methylation frequency between replicons and within coding sequences versus regulatory regions, suggesting that methylation patterns may reflect multipartite genome evolution and influence gene regulation. Overall, our findings reveal extensive epigenomic diversity in S. meliloti, with complex epigenomic signatures varying across replicons and genomic regions. These results enhance our understanding of multipartite genome evolution and highlight the potential role of epigenomic diversity in phenotypic variation.</p>","PeriodicalId":12779,"journal":{"name":"Genome Biology and Evolution","volume":"17 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11711589/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Complex Epigenetic Panorama in the Multipartite Genome of the Nitrogen-Fixing Bacterium Sinorhizobium meliloti.\",\"authors\":\"Iacopo Passeri, Lisa Cangioli, Marco Fondi, Alessio Mengoni, Camilla Fagorzi\",\"doi\":\"10.1093/gbe/evae245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In prokaryotes, DNA methylation plays roles in DNA repair, gene expression, cell cycle progression, and immune recognition of foreign DNA. Genome-wide methylation patterns can vary between strains, influencing phenotype, and gene transfer. However, broader evolutionary studies on bacterial epigenomic variation remain limited. In this study, we conducted an epigenomic analysis using single-molecule real-time sequencing on 21 strains of Sinorhizobium meliloti, a facultative plant nitrogen-fixing alphaproteobacterium. This species is notable for its multipartite genome structure, consisting of a chromosome, chromid, and megaplasmid, leading to significant genomic and phenotypic diversity. We identified 16 palindromic and nonpalindromic methylated DNA motifs, including N4-methylcytosine and N6-methyladenine modifications, and analyzed their associated methyltransferases. Some motifs were methylated across all strains, forming a core set of epigenomic signatures, while others exhibited variable methylation frequencies, indicating a dispensable (shell) epigenome. Additionally, we observed differences in methylation frequency between replicons and within coding sequences versus regulatory regions, suggesting that methylation patterns may reflect multipartite genome evolution and influence gene regulation. Overall, our findings reveal extensive epigenomic diversity in S. meliloti, with complex epigenomic signatures varying across replicons and genomic regions. These results enhance our understanding of multipartite genome evolution and highlight the potential role of epigenomic diversity in phenotypic variation.</p>\",\"PeriodicalId\":12779,\"journal\":{\"name\":\"Genome Biology and Evolution\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11711589/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome Biology and Evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/gbe/evae245\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"EVOLUTIONARY BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology and Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/gbe/evae245","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在原核生物中,DNA甲基化在DNA修复、基因表达、细胞周期进程和外源DNA的免疫识别中起着重要作用。全基因组甲基化模式可以在菌株之间变化,影响表型和基因转移。然而,对细菌表观基因组变异的更广泛的进化研究仍然有限。在这项研究中,我们对21株兼性植物固氮α变形菌Sinorhizobium meliloti进行了单分子实时测序的表观基因组分析。该物种以其多部分基因组结构而闻名,包括染色体,染色质和巨质粒,导致显着的基因组和表型多样性。我们鉴定了16个回文和非回文甲基化的DNA基序,包括n4 -甲基胞嘧啶和n6 -甲基腺嘌呤修饰,并分析了它们相关的甲基转移酶。一些基序在所有菌株中都被甲基化,形成了一组核心的表观基因组特征,而其他基序则表现出不同的甲基化频率,表明一个可缺性(壳)表观基因组。此外,我们观察到复制子之间以及编码序列与调控区域内甲基化频率的差异,表明甲基化模式可能反映了多部基因组进化并影响基因调控。总的来说,我们的研究结果揭示了S. meliloti广泛的表观基因组多样性,在不同的复制子和基因组区域具有复杂的表观基因组特征。这些结果增强了我们对多部基因组进化的理解,并突出了表观基因组多样性在表型变异中的潜在作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Complex Epigenetic Panorama in the Multipartite Genome of the Nitrogen-Fixing Bacterium Sinorhizobium meliloti.

In prokaryotes, DNA methylation plays roles in DNA repair, gene expression, cell cycle progression, and immune recognition of foreign DNA. Genome-wide methylation patterns can vary between strains, influencing phenotype, and gene transfer. However, broader evolutionary studies on bacterial epigenomic variation remain limited. In this study, we conducted an epigenomic analysis using single-molecule real-time sequencing on 21 strains of Sinorhizobium meliloti, a facultative plant nitrogen-fixing alphaproteobacterium. This species is notable for its multipartite genome structure, consisting of a chromosome, chromid, and megaplasmid, leading to significant genomic and phenotypic diversity. We identified 16 palindromic and nonpalindromic methylated DNA motifs, including N4-methylcytosine and N6-methyladenine modifications, and analyzed their associated methyltransferases. Some motifs were methylated across all strains, forming a core set of epigenomic signatures, while others exhibited variable methylation frequencies, indicating a dispensable (shell) epigenome. Additionally, we observed differences in methylation frequency between replicons and within coding sequences versus regulatory regions, suggesting that methylation patterns may reflect multipartite genome evolution and influence gene regulation. Overall, our findings reveal extensive epigenomic diversity in S. meliloti, with complex epigenomic signatures varying across replicons and genomic regions. These results enhance our understanding of multipartite genome evolution and highlight the potential role of epigenomic diversity in phenotypic variation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genome Biology and Evolution
Genome Biology and Evolution EVOLUTIONARY BIOLOGY-GENETICS & HEREDITY
CiteScore
5.80
自引率
6.10%
发文量
169
审稿时长
1 months
期刊介绍: About the journal Genome Biology and Evolution (GBE) publishes leading original research at the interface between evolutionary biology and genomics. Papers considered for publication report novel evolutionary findings that concern natural genome diversity, population genomics, the structure, function, organisation and expression of genomes, comparative genomics, proteomics, and environmental genomic interactions. Major evolutionary insights from the fields of computational biology, structural biology, developmental biology, and cell biology are also considered, as are theoretical advances in the field of genome evolution. GBE’s scope embraces genome-wide evolutionary investigations at all taxonomic levels and for all forms of life — within populations or across domains. Its aims are to further the understanding of genomes in their evolutionary context and further the understanding of evolution from a genome-wide perspective.
期刊最新文献
Massive gene loss in the fungus Sporothrix epigloea accompanied a shift to life in a glucuronoxylomannan-based gel matrix. Plasmodium falciparum CyRPA glycan binding does not explain adaptation to humans. Assembly and Annotation of the Tetraploid Salsola tragus (Russian thistle) Genome. Functional carbohydrate-active enzymes acquired by horizontal gene transfer from plants in the whitefly Bemisia tabaci. Convergent evolution and predictability of gene copy numbers associated with diets in mammals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1