卵巢癌中otud4介导的YAP1信号通路抑制:对巨噬细胞极化和募集的影响

IF 4.8 2区 医学 Q2 IMMUNOLOGY International immunopharmacology Pub Date : 2025-02-06 DOI:10.1016/j.intimp.2024.114011
Mingyue Li , Yanpeng Tian , Lulu Si , Hanlin Fu , Tianjiao Lai , Ruixia Guo
{"title":"卵巢癌中otud4介导的YAP1信号通路抑制:对巨噬细胞极化和募集的影响","authors":"Mingyue Li ,&nbsp;Yanpeng Tian ,&nbsp;Lulu Si ,&nbsp;Hanlin Fu ,&nbsp;Tianjiao Lai ,&nbsp;Ruixia Guo","doi":"10.1016/j.intimp.2024.114011","DOIUrl":null,"url":null,"abstract":"<div><div>Ovarian cancer is a malignancy gynecologic oncology with high incidence and high mortality rate. M2-like tumor-associated macrophages promote cancer cell migration and metastasis. Ovarian tumor family deubiquitinase 4 (OTUD4) belongs to deubiquitinating enzyme family. The roles of OTUD4 in tumor microenvironments in ovarian cancer remains unknow. In this work, OTUD4 was overexpressed or knocked down in high-grade serous ovarian cancer cells OVCAR8 and CAOV3. Ovarian cells were co-cultured with THP-1 macrophages to simulate the tumor microenvironment. We found that OTUD4-expressed ovarian cells inhibited macrophage chemotaxis and M2 polarization. Besides, in ovarian tumor–bearing mouse model, OTUD4 suppressed tumor metastasis and remodeling tumor-associated macrophages phenotype (pro-tumor M2 to anti-tumor M1). In mechanism, OTUD4 protein bound to YAP1 protein, and downregulation of OTUD4 enhanced K63 ubiquitination and nuclear translocation of YAP1, thus increasing CCL2 transcription and subsequent macrophage recruitment. OTUD4 might inhibit CCL2 expression to regulate tumor-associated macrophages in ovarian tumor microenvironment. Those findings present a potential therapeutic strategy for ovarian cancer.</div></div>","PeriodicalId":13859,"journal":{"name":"International immunopharmacology","volume":"147 ","pages":"Article 114011"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"OTUD4-mediated inhibition of YAP1 signaling pathway in ovarian cancer: Implications for macrophage polarization and recruitment\",\"authors\":\"Mingyue Li ,&nbsp;Yanpeng Tian ,&nbsp;Lulu Si ,&nbsp;Hanlin Fu ,&nbsp;Tianjiao Lai ,&nbsp;Ruixia Guo\",\"doi\":\"10.1016/j.intimp.2024.114011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ovarian cancer is a malignancy gynecologic oncology with high incidence and high mortality rate. M2-like tumor-associated macrophages promote cancer cell migration and metastasis. Ovarian tumor family deubiquitinase 4 (OTUD4) belongs to deubiquitinating enzyme family. The roles of OTUD4 in tumor microenvironments in ovarian cancer remains unknow. In this work, OTUD4 was overexpressed or knocked down in high-grade serous ovarian cancer cells OVCAR8 and CAOV3. Ovarian cells were co-cultured with THP-1 macrophages to simulate the tumor microenvironment. We found that OTUD4-expressed ovarian cells inhibited macrophage chemotaxis and M2 polarization. Besides, in ovarian tumor–bearing mouse model, OTUD4 suppressed tumor metastasis and remodeling tumor-associated macrophages phenotype (pro-tumor M2 to anti-tumor M1). In mechanism, OTUD4 protein bound to YAP1 protein, and downregulation of OTUD4 enhanced K63 ubiquitination and nuclear translocation of YAP1, thus increasing CCL2 transcription and subsequent macrophage recruitment. OTUD4 might inhibit CCL2 expression to regulate tumor-associated macrophages in ovarian tumor microenvironment. Those findings present a potential therapeutic strategy for ovarian cancer.</div></div>\",\"PeriodicalId\":13859,\"journal\":{\"name\":\"International immunopharmacology\",\"volume\":\"147 \",\"pages\":\"Article 114011\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International immunopharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1567576924025335\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International immunopharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567576924025335","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

卵巢癌是一种发病率高、死亡率高的恶性妇科肿瘤。m2样肿瘤相关巨噬细胞促进癌细胞迁移和转移。卵巢肿瘤家族去泛素酶4 (OTUD4)属于去泛素酶家族。OTUD4在卵巢癌肿瘤微环境中的作用尚不清楚。在这项研究中,OTUD4在高级别浆液性卵巢癌细胞OVCAR8和CAOV3中过表达或被敲低。卵巢细胞与THP-1巨噬细胞共培养,模拟肿瘤微环境。我们发现otud4表达的卵巢细胞抑制巨噬细胞趋化和M2极化。此外,在卵巢荷瘤小鼠模型中,OTUD4抑制肿瘤转移并重塑肿瘤相关巨噬细胞表型(促肿瘤M2到抗肿瘤M1)。在机制上,OTUD4蛋白与YAP1蛋白结合,下调OTUD4蛋白可增强K63泛素化和YAP1的核易位,从而增加CCL2转录和随后的巨噬细胞募集。OTUD4可能抑制CCL2表达,调控卵巢肿瘤微环境中肿瘤相关巨噬细胞。这些发现为卵巢癌提供了一种潜在的治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
OTUD4-mediated inhibition of YAP1 signaling pathway in ovarian cancer: Implications for macrophage polarization and recruitment
Ovarian cancer is a malignancy gynecologic oncology with high incidence and high mortality rate. M2-like tumor-associated macrophages promote cancer cell migration and metastasis. Ovarian tumor family deubiquitinase 4 (OTUD4) belongs to deubiquitinating enzyme family. The roles of OTUD4 in tumor microenvironments in ovarian cancer remains unknow. In this work, OTUD4 was overexpressed or knocked down in high-grade serous ovarian cancer cells OVCAR8 and CAOV3. Ovarian cells were co-cultured with THP-1 macrophages to simulate the tumor microenvironment. We found that OTUD4-expressed ovarian cells inhibited macrophage chemotaxis and M2 polarization. Besides, in ovarian tumor–bearing mouse model, OTUD4 suppressed tumor metastasis and remodeling tumor-associated macrophages phenotype (pro-tumor M2 to anti-tumor M1). In mechanism, OTUD4 protein bound to YAP1 protein, and downregulation of OTUD4 enhanced K63 ubiquitination and nuclear translocation of YAP1, thus increasing CCL2 transcription and subsequent macrophage recruitment. OTUD4 might inhibit CCL2 expression to regulate tumor-associated macrophages in ovarian tumor microenvironment. Those findings present a potential therapeutic strategy for ovarian cancer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.40
自引率
3.60%
发文量
935
审稿时长
53 days
期刊介绍: International Immunopharmacology is the primary vehicle for the publication of original research papers pertinent to the overlapping areas of immunology, pharmacology, cytokine biology, immunotherapy, immunopathology and immunotoxicology. Review articles that encompass these subjects are also welcome. The subject material appropriate for submission includes: • Clinical studies employing immunotherapy of any type including the use of: bacterial and chemical agents; thymic hormones, interferon, lymphokines, etc., in transplantation and diseases such as cancer, immunodeficiency, chronic infection and allergic, inflammatory or autoimmune disorders. • Studies on the mechanisms of action of these agents for specific parameters of immune competence as well as the overall clinical state. • Pre-clinical animal studies and in vitro studies on mechanisms of action with immunopotentiators, immunomodulators, immunoadjuvants and other pharmacological agents active on cells participating in immune or allergic responses. • Pharmacological compounds, microbial products and toxicological agents that affect the lymphoid system, and their mechanisms of action. • Agents that activate genes or modify transcription and translation within the immune response. • Substances activated, generated, or released through immunologic or related pathways that are pharmacologically active. • Production, function and regulation of cytokines and their receptors. • Classical pharmacological studies on the effects of chemokines and bioactive factors released during immunological reactions.
期刊最新文献
About the ozone ability in using adaptive chaos to restore a healthy state in the oxygen-ozone adjunct therapy Diabetes exacerbates periodontitis by disrupting IL-33-mediated interaction between periodontal ligament fibroblasts and macrophages Effects of metabolism upon immunity: Targeting myeloid-derived suppressor cells for the treatment of breast cancer is a promising area of study HSPA5-mediated glioma hypoxia tolerance promotes M2 macrophage polarization under hypoxic microenvironment. Morusin regulates the migration of M2 macrophages and GBM cells through the CCL4-CCR5 axis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1