基于残差图卷积网络和条件随机场的微生物-药物关联预测。

IF 3.9 2区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Interdisciplinary Sciences: Computational Life Sciences Pub Date : 2025-01-07 DOI:10.1007/s12539-024-00678-z
Xiaoxin Du, Jingwei Li, Bo Wang, Jianfei Zhang, Tongxuan Wang, Junqi Wang
{"title":"基于残差图卷积网络和条件随机场的微生物-药物关联预测。","authors":"Xiaoxin Du, Jingwei Li, Bo Wang, Jianfei Zhang, Tongxuan Wang, Junqi Wang","doi":"10.1007/s12539-024-00678-z","DOIUrl":null,"url":null,"abstract":"<p><p>The process of discovering new drugs related to microbes through traditional biological methods is lengthy and costly. In response to these issues, a new computational model (NRGCNMDA) is proposed to predict microbe-drug associations. First, Node2vec is used to extract potential associations between microorganisms and drugs, and a heterogeneous network of microbes and drugs is constructed. Then, a Graph Convolutional Network incorporating a fusion residual network mechanism (REGCN) is utilized to learn meaningful high-order similarity features. In addition, conditional random fields (CRF) are applied to ensure that microbes and drugs have similar feature embeddings. Finally, unobserved microbe-drug associations are scored based on combined embeddings. The experimental findings demonstrate that the NRGCNMDA approach outperforms several existing deep learning methods, and its AUC and AUPR values are 95.16% and 93.02%, respectively. The case study demonstrates that NRGCNMDA accurately predicts drugs associated with Enterococcus faecalis and Listeria monocytogenes, as well as microbes associated with ibuprofen and tetracycline.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NRGCNMDA: Microbe-Drug Association Prediction Based on Residual Graph Convolutional Networks and Conditional Random Fields.\",\"authors\":\"Xiaoxin Du, Jingwei Li, Bo Wang, Jianfei Zhang, Tongxuan Wang, Junqi Wang\",\"doi\":\"10.1007/s12539-024-00678-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The process of discovering new drugs related to microbes through traditional biological methods is lengthy and costly. In response to these issues, a new computational model (NRGCNMDA) is proposed to predict microbe-drug associations. First, Node2vec is used to extract potential associations between microorganisms and drugs, and a heterogeneous network of microbes and drugs is constructed. Then, a Graph Convolutional Network incorporating a fusion residual network mechanism (REGCN) is utilized to learn meaningful high-order similarity features. In addition, conditional random fields (CRF) are applied to ensure that microbes and drugs have similar feature embeddings. Finally, unobserved microbe-drug associations are scored based on combined embeddings. The experimental findings demonstrate that the NRGCNMDA approach outperforms several existing deep learning methods, and its AUC and AUPR values are 95.16% and 93.02%, respectively. The case study demonstrates that NRGCNMDA accurately predicts drugs associated with Enterococcus faecalis and Listeria monocytogenes, as well as microbes associated with ibuprofen and tetracycline.</p>\",\"PeriodicalId\":13670,\"journal\":{\"name\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12539-024-00678-z\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Sciences: Computational Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12539-024-00678-z","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

通过传统的生物学方法发现与微生物有关的新药的过程是漫长而昂贵的。针对这些问题,提出了一种新的计算模型(NRGCNMDA)来预测微生物与药物的关联。首先,利用Node2vec提取微生物与药物之间的潜在关联,构建微生物与药物的异构网络。然后,利用融合残差网络机制(REGCN)的图卷积网络学习有意义的高阶相似特征。此外,利用条件随机场(CRF)来确保微生物和药物具有相似的特征嵌入。最后,基于组合嵌入对未观察到的微生物-药物关联进行评分。实验结果表明,NRGCNMDA方法优于现有的几种深度学习方法,其AUC和AUPR值分别为95.16%和93.02%。案例研究表明,NRGCNMDA能够准确预测粪肠球菌和单核增生李斯特菌相关药物,以及与布洛芬和四环素相关的微生物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
NRGCNMDA: Microbe-Drug Association Prediction Based on Residual Graph Convolutional Networks and Conditional Random Fields.

The process of discovering new drugs related to microbes through traditional biological methods is lengthy and costly. In response to these issues, a new computational model (NRGCNMDA) is proposed to predict microbe-drug associations. First, Node2vec is used to extract potential associations between microorganisms and drugs, and a heterogeneous network of microbes and drugs is constructed. Then, a Graph Convolutional Network incorporating a fusion residual network mechanism (REGCN) is utilized to learn meaningful high-order similarity features. In addition, conditional random fields (CRF) are applied to ensure that microbes and drugs have similar feature embeddings. Finally, unobserved microbe-drug associations are scored based on combined embeddings. The experimental findings demonstrate that the NRGCNMDA approach outperforms several existing deep learning methods, and its AUC and AUPR values are 95.16% and 93.02%, respectively. The case study demonstrates that NRGCNMDA accurately predicts drugs associated with Enterococcus faecalis and Listeria monocytogenes, as well as microbes associated with ibuprofen and tetracycline.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Interdisciplinary Sciences: Computational Life Sciences
Interdisciplinary Sciences: Computational Life Sciences MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
8.60
自引率
4.20%
发文量
55
期刊介绍: Interdisciplinary Sciences--Computational Life Sciences aims to cover the most recent and outstanding developments in interdisciplinary areas of sciences, especially focusing on computational life sciences, an area that is enjoying rapid development at the forefront of scientific research and technology. The journal publishes original papers of significant general interest covering recent research and developments. Articles will be published rapidly by taking full advantage of internet technology for online submission and peer-reviewing of manuscripts, and then by publishing OnlineFirstTM through SpringerLink even before the issue is built or sent to the printer. The editorial board consists of many leading scientists with international reputation, among others, Luc Montagnier (UNESCO, France), Dennis Salahub (University of Calgary, Canada), Weitao Yang (Duke University, USA). Prof. Dongqing Wei at the Shanghai Jiatong University is appointed as the editor-in-chief; he made important contributions in bioinformatics and computational physics and is best known for his ground-breaking works on the theory of ferroelectric liquids. With the help from a team of associate editors and the editorial board, an international journal with sound reputation shall be created.
期刊最新文献
Reinforced Collaborative-Competitive Representation for Biomedical Image Recognition. A Domain Adaptive Interpretable Substructure-Aware Graph Attention Network for Drug-Drug Interaction Prediction. NRGCNMDA: Microbe-Drug Association Prediction Based on Residual Graph Convolutional Networks and Conditional Random Fields. Reconstructing Waddington Landscape from Cell Migration and Proliferation. MTGGF: A Metabolism Type-Aware Graph Generative Model for Molecular Metabolite Prediction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1