瞬时受体电位锚蛋白1抑制对大鼠肾缺血再灌注损伤的保护作用。

IF 3.2 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Biochemical and Molecular Toxicology Pub Date : 2025-01-08 DOI:10.1002/jbt.70132
Murat Çakır, Ali Aydın, Semanur Fırat, Güldeniz Şekerci, Burak Bircan, Samet Öz
{"title":"瞬时受体电位锚蛋白1抑制对大鼠肾缺血再灌注损伤的保护作用。","authors":"Murat Çakır,&nbsp;Ali Aydın,&nbsp;Semanur Fırat,&nbsp;Güldeniz Şekerci,&nbsp;Burak Bircan,&nbsp;Samet Öz","doi":"10.1002/jbt.70132","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The transient receptor potential ankyrin 1 (TRPA1) channels, characterized as nonselective cation channels with permeability to calcium ions (Ca<sup>2 +</sup>), are part of the extensive family of transient receptor potential (TRP) channels. Research has demonstrated that TRPA1 channels function as sensors for oxidative stress in the renal tubules. Additionally, TRPA1 expression has increased in renal tissue following ischemia-reperfusion (IR). There is also a significant correlation between IR-induced renal injury and TRPA1 expression. This study investigated the effects of selective TRPA1 agonist ASP7663 and selective TRPA1 antagonist HC-030031 on renal IR injury. A total of 40 rats were divided into four groups: control, IR, IR+ASP7663, and IR + HC-030031. The rat kidneys were exposed to 45 min of ischemia, followed by 24 h of reperfusion. TRPA1 agonist ASP7663 and selective TRPA1 antagonist HC-030031 were administered intraperitoneally to the treatment groups with renal IR. HC-030031 administration reduced the elevated kidney injury molecule-1 (KIM-1), blood urea nitrogen (BUN), and creatinine (Cre) caused by renal IR. HC-030031 administration reduced the increased histopathological damage in renal tissue due to IR. It also reduced renal tissue interleukin-1beta (IL-1β), interleukin-6 (IL-6), toll-like receptor-4 (TLR-4), phosphorylated-NF-κB, phosphorylated-IκB-α, tumor necrosis factor-alpha (TNF-α), and caspase-3 levels. In this study, TRPA1 antagonist HC-030031 showed a protective behavior on renal IR injury by averting inflammation and apoptosis. After further studies, TRPA1 inhibition may be a new treatment strategy to prevent renal IR injury.</p></div>","PeriodicalId":15151,"journal":{"name":"Journal of Biochemical and Molecular Toxicology","volume":"39 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Protective Effect of Transient Receptor Potential Ankyrin 1 Inhibition on Renal Ischemia Reperfusion Injury in Rats\",\"authors\":\"Murat Çakır,&nbsp;Ali Aydın,&nbsp;Semanur Fırat,&nbsp;Güldeniz Şekerci,&nbsp;Burak Bircan,&nbsp;Samet Öz\",\"doi\":\"10.1002/jbt.70132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The transient receptor potential ankyrin 1 (TRPA1) channels, characterized as nonselective cation channels with permeability to calcium ions (Ca<sup>2 +</sup>), are part of the extensive family of transient receptor potential (TRP) channels. Research has demonstrated that TRPA1 channels function as sensors for oxidative stress in the renal tubules. Additionally, TRPA1 expression has increased in renal tissue following ischemia-reperfusion (IR). There is also a significant correlation between IR-induced renal injury and TRPA1 expression. This study investigated the effects of selective TRPA1 agonist ASP7663 and selective TRPA1 antagonist HC-030031 on renal IR injury. A total of 40 rats were divided into four groups: control, IR, IR+ASP7663, and IR + HC-030031. The rat kidneys were exposed to 45 min of ischemia, followed by 24 h of reperfusion. TRPA1 agonist ASP7663 and selective TRPA1 antagonist HC-030031 were administered intraperitoneally to the treatment groups with renal IR. HC-030031 administration reduced the elevated kidney injury molecule-1 (KIM-1), blood urea nitrogen (BUN), and creatinine (Cre) caused by renal IR. HC-030031 administration reduced the increased histopathological damage in renal tissue due to IR. It also reduced renal tissue interleukin-1beta (IL-1β), interleukin-6 (IL-6), toll-like receptor-4 (TLR-4), phosphorylated-NF-κB, phosphorylated-IκB-α, tumor necrosis factor-alpha (TNF-α), and caspase-3 levels. In this study, TRPA1 antagonist HC-030031 showed a protective behavior on renal IR injury by averting inflammation and apoptosis. After further studies, TRPA1 inhibition may be a new treatment strategy to prevent renal IR injury.</p></div>\",\"PeriodicalId\":15151,\"journal\":{\"name\":\"Journal of Biochemical and Molecular Toxicology\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biochemical and Molecular Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbt.70132\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biochemical and Molecular Toxicology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbt.70132","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

瞬时受体电位锚蛋白1 (TRPA1)通道是瞬时受体电位(TRP)通道家族的一员,其特征是对钙离子(Ca2 +)具有渗透性的非选择性阳离子通道。研究表明,TRPA1通道在肾小管中作为氧化应激传感器起作用。此外,肾缺血再灌注(IR)后,肾组织中TRPA1表达增加。ir致肾损伤与TRPA1表达也有显著相关性。本研究探讨了选择性TRPA1激动剂ASP7663和选择性TRPA1拮抗剂HC-030031对肾IR损伤的影响。将40只大鼠分为对照组、IR组、IR+ASP7663组和IR+ HC-030031组。大鼠肾脏缺血45 min,再灌注24 h。肾IR治疗组腹腔给予TRPA1激动剂ASP7663和选择性TRPA1拮抗剂HC-030031。HC-030031可降低肾IR引起的肾损伤分子-1 (KIM-1)、血尿素氮(BUN)、肌酐(Cre)升高。HC-030031可减轻IR引起的肾组织病理损伤。同时降低肾组织白细胞介素-1β (IL-1β)、白细胞介素-6 (IL-6)、toll样受体-4 (TLR-4)、磷酸化nf -κB、磷酸化i -κB -α、肿瘤坏死因子-α (TNF-α)和caspase-3水平。本研究中,TRPA1拮抗剂HC-030031通过抑制炎症和细胞凋亡对肾IR损伤具有保护作用。经进一步研究,抑制TRPA1可能是预防肾IR损伤的一种新的治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Protective Effect of Transient Receptor Potential Ankyrin 1 Inhibition on Renal Ischemia Reperfusion Injury in Rats

The transient receptor potential ankyrin 1 (TRPA1) channels, characterized as nonselective cation channels with permeability to calcium ions (Ca2 +), are part of the extensive family of transient receptor potential (TRP) channels. Research has demonstrated that TRPA1 channels function as sensors for oxidative stress in the renal tubules. Additionally, TRPA1 expression has increased in renal tissue following ischemia-reperfusion (IR). There is also a significant correlation between IR-induced renal injury and TRPA1 expression. This study investigated the effects of selective TRPA1 agonist ASP7663 and selective TRPA1 antagonist HC-030031 on renal IR injury. A total of 40 rats were divided into four groups: control, IR, IR+ASP7663, and IR + HC-030031. The rat kidneys were exposed to 45 min of ischemia, followed by 24 h of reperfusion. TRPA1 agonist ASP7663 and selective TRPA1 antagonist HC-030031 were administered intraperitoneally to the treatment groups with renal IR. HC-030031 administration reduced the elevated kidney injury molecule-1 (KIM-1), blood urea nitrogen (BUN), and creatinine (Cre) caused by renal IR. HC-030031 administration reduced the increased histopathological damage in renal tissue due to IR. It also reduced renal tissue interleukin-1beta (IL-1β), interleukin-6 (IL-6), toll-like receptor-4 (TLR-4), phosphorylated-NF-κB, phosphorylated-IκB-α, tumor necrosis factor-alpha (TNF-α), and caspase-3 levels. In this study, TRPA1 antagonist HC-030031 showed a protective behavior on renal IR injury by averting inflammation and apoptosis. After further studies, TRPA1 inhibition may be a new treatment strategy to prevent renal IR injury.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.80
自引率
2.80%
发文量
277
审稿时长
6-12 weeks
期刊介绍: The Journal of Biochemical and Molecular Toxicology is an international journal that contains original research papers, rapid communications, mini-reviews, and book reviews, all focusing on the molecular mechanisms of action and detoxication of exogenous and endogenous chemicals and toxic agents. The scope includes effects on the organism at all stages of development, on organ systems, tissues, and cells as well as on enzymes, receptors, hormones, and genes. The biochemical and molecular aspects of uptake, transport, storage, excretion, lactivation and detoxication of drugs, agricultural, industrial and environmental chemicals, natural products and food additives are all subjects suitable for publication. Of particular interest are aspects of molecular biology related to biochemical toxicology. These include studies of the expression of genes related to detoxication and activation enzymes, toxicants with modes of action involving effects on nucleic acids, gene expression and protein synthesis, and the toxicity of products derived from biotechnology.
期刊最新文献
Curcumin Restrains TGF-β2-Induced Proliferation, Migration, Invasion and EMT in Lens Epithelial Cells by Regulating FGF7/ZEB1 Axis Mitochondrial Quality Control and Melatonin: A Strategy Against Myocardial Injury Sarsasapogenin Inhibits HCT116 and Caco-2 Cell Malignancy and Tumor Growth in a Xenograft Mouse Model of Colorectal Cancer by Inactivating MAPK Signaling Protective Effects of Galangin Against Cyclophosphamide-Induced Cardiotoxicity via Suppressing NF-κB and Improving Mitochondrial Biogenesis Issue information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1