Xenia Chelius, Nathalie Rausch, Veronika Bartosch, Maria Klecker, Till Klecker, Benedikt Westermann
{"title":"肌球蛋白Myo2的蛋白相互作用图揭示了Alo1在酵母线粒体遗传中的作用。","authors":"Xenia Chelius, Nathalie Rausch, Veronika Bartosch, Maria Klecker, Till Klecker, Benedikt Westermann","doi":"10.1242/jcs.263678","DOIUrl":null,"url":null,"abstract":"<p><p>Budding yeast cells multiply by asymmetric cell division. During this process, the cell organelles are transported by myosin motors along the actin cytoskeleton into the growing bud, and, at the same time, some organelles must be retained in the mother cell. The ordered partitioning of organelles depends on highly regulated binding of motor proteins to cargo membranes. To search for novel components involved in this process, we performed a protein fragment complementation screen using the cargo-binding domain of Myo2, the major organelle transporter in yeast, as bait and a genome-wide strain collection expressing yeast proteins as prey. One robust hit was Alo1, a poorly characterized D-arabinono-1,4-lactone oxidase located in the mitochondrial outer membrane. We found that mutants lacking Alo1 exhibited defects in mitochondrial morphology and inheritance. During oxidative stress, dysfunctional mitochondria are immobilized in the mother in wild-type cells. Intriguingly, overexpression of ALO1 restored bud-directed transport of mitochondria under these conditions. We propose that Alo1 supports the recruitment of Myo2 to mitochondria and its activity is particularly important under oxidative stress.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A protein interaction map of the myosin Myo2 reveals a role for Alo1 in mitochondrial inheritance in yeast.\",\"authors\":\"Xenia Chelius, Nathalie Rausch, Veronika Bartosch, Maria Klecker, Till Klecker, Benedikt Westermann\",\"doi\":\"10.1242/jcs.263678\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Budding yeast cells multiply by asymmetric cell division. During this process, the cell organelles are transported by myosin motors along the actin cytoskeleton into the growing bud, and, at the same time, some organelles must be retained in the mother cell. The ordered partitioning of organelles depends on highly regulated binding of motor proteins to cargo membranes. To search for novel components involved in this process, we performed a protein fragment complementation screen using the cargo-binding domain of Myo2, the major organelle transporter in yeast, as bait and a genome-wide strain collection expressing yeast proteins as prey. One robust hit was Alo1, a poorly characterized D-arabinono-1,4-lactone oxidase located in the mitochondrial outer membrane. We found that mutants lacking Alo1 exhibited defects in mitochondrial morphology and inheritance. During oxidative stress, dysfunctional mitochondria are immobilized in the mother in wild-type cells. Intriguingly, overexpression of ALO1 restored bud-directed transport of mitochondria under these conditions. We propose that Alo1 supports the recruitment of Myo2 to mitochondria and its activity is particularly important under oxidative stress.</p>\",\"PeriodicalId\":15227,\"journal\":{\"name\":\"Journal of cell science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of cell science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1242/jcs.263678\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cell science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/jcs.263678","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
A protein interaction map of the myosin Myo2 reveals a role for Alo1 in mitochondrial inheritance in yeast.
Budding yeast cells multiply by asymmetric cell division. During this process, the cell organelles are transported by myosin motors along the actin cytoskeleton into the growing bud, and, at the same time, some organelles must be retained in the mother cell. The ordered partitioning of organelles depends on highly regulated binding of motor proteins to cargo membranes. To search for novel components involved in this process, we performed a protein fragment complementation screen using the cargo-binding domain of Myo2, the major organelle transporter in yeast, as bait and a genome-wide strain collection expressing yeast proteins as prey. One robust hit was Alo1, a poorly characterized D-arabinono-1,4-lactone oxidase located in the mitochondrial outer membrane. We found that mutants lacking Alo1 exhibited defects in mitochondrial morphology and inheritance. During oxidative stress, dysfunctional mitochondria are immobilized in the mother in wild-type cells. Intriguingly, overexpression of ALO1 restored bud-directed transport of mitochondria under these conditions. We propose that Alo1 supports the recruitment of Myo2 to mitochondria and its activity is particularly important under oxidative stress.