切向流过滤结合大小排斥色谱法从人脐带间充质干细胞分离的EV小亚群的独特分子特性和功能。

IF 15.5 1区 医学 Q1 CELL BIOLOGY Journal of Extracellular Vesicles Pub Date : 2025-01-01 DOI:10.1002/jev2.70029
Wei Liu, Xinyu Wang, Yating Chen, Jiapei Yuan, Huiyu Zhang, Xin Jin, Yuying Jiang, Junjing Cao, Zibin Wang, Shuo Yang, Bingwei Wang, Tinghe Wu, Jing Li
{"title":"切向流过滤结合大小排斥色谱法从人脐带间充质干细胞分离的EV小亚群的独特分子特性和功能。","authors":"Wei Liu, Xinyu Wang, Yating Chen, Jiapei Yuan, Huiyu Zhang, Xin Jin, Yuying Jiang, Junjing Cao, Zibin Wang, Shuo Yang, Bingwei Wang, Tinghe Wu, Jing Li","doi":"10.1002/jev2.70029","DOIUrl":null,"url":null,"abstract":"<p><p>As functional derivatives of mesenchymal stem cells (MSCs), small extracellular vesicles (sEVs) have garnered significant attention and application in regenerative medicine. However, the technical limitations for large-scale isolation of sEVs and their heterogeneous nature have added complexity to their applications. It remains unclear if the heterogeneous sEVs represent different aspects of MSCs functions. Here, we provide a method for the large-scale production of sEVs subpopulations derived from human umbilical cord mesenchymal stem cells (HucMSCs), utilizing tangential flow filtration combined with size exclusion chromatography. The resulting subpopulations, S1-sEVs and S2-sEVs, exhibited stable variations in size, membrane-marked proteins, and carrying cargos, thereby displaying distinct functions both in vitro and in animal disease models. S1-sEVs, that highly expressed CD9, HRS and GPC1, demonstrated a greater immunomodulatory impact, while S2-sEVs with enriched expression of CD63 and FLOT1/2 possessed enhanced capacities in promoting cell proliferation and angiogenesis. These discrepancies are attributed to the specific proteins and miRNAs they contain. Further investigation revealed that the two distinct sEVs subpopulations corresponded to different biological processes: the ESCRT pathway (S1-sEVs) and the ESCRT-independent pathway represented by lipid rafts (S2-sEVs). Therefore, we propose the potential for large-scale isolation and purification of sEVs subpopulations from HucMSCs with distinct functions. This approach may provide advantages for targeted therapeutic interventions in various MSC indications.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":"14 1","pages":"e70029"},"PeriodicalIF":15.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11714183/pdf/","citationCount":"0","resultStr":"{\"title\":\"Distinct molecular properties and functions of small EV subpopulations isolated from human umbilical cord MSCs using tangential flow filtration combined with size exclusion chromatography.\",\"authors\":\"Wei Liu, Xinyu Wang, Yating Chen, Jiapei Yuan, Huiyu Zhang, Xin Jin, Yuying Jiang, Junjing Cao, Zibin Wang, Shuo Yang, Bingwei Wang, Tinghe Wu, Jing Li\",\"doi\":\"10.1002/jev2.70029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As functional derivatives of mesenchymal stem cells (MSCs), small extracellular vesicles (sEVs) have garnered significant attention and application in regenerative medicine. However, the technical limitations for large-scale isolation of sEVs and their heterogeneous nature have added complexity to their applications. It remains unclear if the heterogeneous sEVs represent different aspects of MSCs functions. Here, we provide a method for the large-scale production of sEVs subpopulations derived from human umbilical cord mesenchymal stem cells (HucMSCs), utilizing tangential flow filtration combined with size exclusion chromatography. The resulting subpopulations, S1-sEVs and S2-sEVs, exhibited stable variations in size, membrane-marked proteins, and carrying cargos, thereby displaying distinct functions both in vitro and in animal disease models. S1-sEVs, that highly expressed CD9, HRS and GPC1, demonstrated a greater immunomodulatory impact, while S2-sEVs with enriched expression of CD63 and FLOT1/2 possessed enhanced capacities in promoting cell proliferation and angiogenesis. These discrepancies are attributed to the specific proteins and miRNAs they contain. Further investigation revealed that the two distinct sEVs subpopulations corresponded to different biological processes: the ESCRT pathway (S1-sEVs) and the ESCRT-independent pathway represented by lipid rafts (S2-sEVs). Therefore, we propose the potential for large-scale isolation and purification of sEVs subpopulations from HucMSCs with distinct functions. This approach may provide advantages for targeted therapeutic interventions in various MSC indications.</p>\",\"PeriodicalId\":15811,\"journal\":{\"name\":\"Journal of Extracellular Vesicles\",\"volume\":\"14 1\",\"pages\":\"e70029\"},\"PeriodicalIF\":15.5000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11714183/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Extracellular Vesicles\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/jev2.70029\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Extracellular Vesicles","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/jev2.70029","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

小细胞外囊泡(sev)作为间充质干细胞(MSCs)的功能衍生物,在再生医学中得到了广泛的关注和应用。然而,sev大规模隔离的技术限制及其异构特性增加了其应用的复杂性。目前尚不清楚异质性sev是否代表MSCs功能的不同方面。在这里,我们提供了一种大规模生产来自人脐带间充质干细胞(HucMSCs)的sev亚群的方法,利用切向流过滤结合大小排斥色谱。由此产生的s1 - sev和s2 - sev亚群在大小、膜标记蛋白和携带货物方面表现出稳定的变化,因此在体外和动物疾病模型中都表现出不同的功能。高表达CD9、HRS和GPC1的s1 - sev具有更强的免疫调节作用,而高表达CD63和FLOT1/2的s2 - sev具有更强的促进细胞增殖和血管生成的能力。这些差异归因于它们所含的特定蛋白质和mirna。进一步的研究表明,两个不同的sev亚群对应不同的生物学过程:ESCRT途径(s1 - sev)和以脂筏为代表的ESCRT独立途径(s2 - sev)。因此,我们提出了从具有不同功能的HucMSCs中大规模分离和纯化sev亚群的潜力。这种方法可能为各种骨髓间充质干细胞适应症的靶向治疗干预提供优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Distinct molecular properties and functions of small EV subpopulations isolated from human umbilical cord MSCs using tangential flow filtration combined with size exclusion chromatography.

As functional derivatives of mesenchymal stem cells (MSCs), small extracellular vesicles (sEVs) have garnered significant attention and application in regenerative medicine. However, the technical limitations for large-scale isolation of sEVs and their heterogeneous nature have added complexity to their applications. It remains unclear if the heterogeneous sEVs represent different aspects of MSCs functions. Here, we provide a method for the large-scale production of sEVs subpopulations derived from human umbilical cord mesenchymal stem cells (HucMSCs), utilizing tangential flow filtration combined with size exclusion chromatography. The resulting subpopulations, S1-sEVs and S2-sEVs, exhibited stable variations in size, membrane-marked proteins, and carrying cargos, thereby displaying distinct functions both in vitro and in animal disease models. S1-sEVs, that highly expressed CD9, HRS and GPC1, demonstrated a greater immunomodulatory impact, while S2-sEVs with enriched expression of CD63 and FLOT1/2 possessed enhanced capacities in promoting cell proliferation and angiogenesis. These discrepancies are attributed to the specific proteins and miRNAs they contain. Further investigation revealed that the two distinct sEVs subpopulations corresponded to different biological processes: the ESCRT pathway (S1-sEVs) and the ESCRT-independent pathway represented by lipid rafts (S2-sEVs). Therefore, we propose the potential for large-scale isolation and purification of sEVs subpopulations from HucMSCs with distinct functions. This approach may provide advantages for targeted therapeutic interventions in various MSC indications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Extracellular Vesicles
Journal of Extracellular Vesicles Biochemistry, Genetics and Molecular Biology-Cell Biology
CiteScore
27.30
自引率
4.40%
发文量
115
审稿时长
12 weeks
期刊介绍: The Journal of Extracellular Vesicles is an open access research publication that focuses on extracellular vesicles, including microvesicles, exosomes, ectosomes, and apoptotic bodies. It serves as the official journal of the International Society for Extracellular Vesicles and aims to facilitate the exchange of data, ideas, and information pertaining to the chemistry, biology, and applications of extracellular vesicles. The journal covers various aspects such as the cellular and molecular mechanisms of extracellular vesicles biogenesis, technological advancements in their isolation, quantification, and characterization, the role and function of extracellular vesicles in biology, stem cell-derived extracellular vesicles and their biology, as well as the application of extracellular vesicles for pharmacological, immunological, or genetic therapies. The Journal of Extracellular Vesicles is widely recognized and indexed by numerous services, including Biological Abstracts, BIOSIS Previews, Chemical Abstracts Service (CAS), Current Contents/Life Sciences, Directory of Open Access Journals (DOAJ), Journal Citation Reports/Science Edition, Google Scholar, ProQuest Natural Science Collection, ProQuest SciTech Collection, SciTech Premium Collection, PubMed Central/PubMed, Science Citation Index Expanded, ScienceOpen, and Scopus.
期刊最新文献
DetectEV: A functional enzymatic assay to assess integrity and bioactivity of extracellular vesicles. Distinct molecular properties and functions of small EV subpopulations isolated from human umbilical cord MSCs using tangential flow filtration combined with size exclusion chromatography. Extracellular vesicles promote the infection and pathogenicity of Japanese encephalitis virus. Presenilins as hub proteins controlling the endocytic and autophagic pathways and small extracellular vesicle secretion. Reproducibility of extracellular vesicle research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1