解开中国气候变化引起的复合低太阳-低风极端现象。

IF 16.3 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES National Science Review Pub Date : 2024-11-25 eCollection Date: 2025-01-01 DOI:10.1093/nsr/nwae424
Licheng Wang, Yawen Liu, Lei Zhao, Xi Lu, Liangdian Huang, Yana Jin, Steven J Davis, Amir Aghakouchak, Xin Huang, Tong Zhu, Yue Qin
{"title":"解开中国气候变化引起的复合低太阳-低风极端现象。","authors":"Licheng Wang, Yawen Liu, Lei Zhao, Xi Lu, Liangdian Huang, Yana Jin, Steven J Davis, Amir Aghakouchak, Xin Huang, Tong Zhu, Yue Qin","doi":"10.1093/nsr/nwae424","DOIUrl":null,"url":null,"abstract":"<p><p>China's pursuit of carbon neutrality targets hinges on a profound shift towards low-carbon energy, primarily reliant on intermittent and variable, yet crucial, solar and wind power sources. In particular, low-solar-low-wind (LSLW) compound extremes present a critical yet largely ignored threat to the reliability of renewable electricity generation. While existing studies have largely evaluated the impacts of average climate-induced changes in renewable energy resources, comprehensive analyses of the compound extremes and, particularly, the underpinning dynamic mechanisms remain scarce. Here we show the dynamic evolution of compound LSLW extremes and their underlying mechanisms across China via coupling multi-model simulations with diagnostic analysis. Our results unveil a strong topographic dependence in the frequency of compound LSLW extremes, with a national average frequency of 16.4 (10th-90th percentile interval ranges from 5.3 to 32.6) days/yr, when renewable energy resources in eastern China are particularly compromised (∼80% lower than that under an average climate). We reveal a striking increase in the frequency of LSLW extremes, ranging from 12.4% under SSP126 to 60.2% under SSP370, primarily driven by both renewable energy resource declines and increasingly heavily-tailed distributions, resulting from weakened meridional temperature (pressure) gradient, increased frequency of extremely dense cloud cover and additional distinctive influence of increased aerosols under SSP370. Our study underscores the urgency of preparing for significantly heightened occurrences of LSLW events in a warmer future, emphasizing that such climate-induced compound LSLW extreme changes are not simply by chance, but rather projectable, thereby underscoring the need for proactive adaptation strategies. Such insights are crucial for countries navigating a similar transition towards renewable energy.</p>","PeriodicalId":18842,"journal":{"name":"National Science Review","volume":"12 1","pages":"nwae424"},"PeriodicalIF":16.3000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11715666/pdf/","citationCount":"0","resultStr":"{\"title\":\"Unraveling climate change-induced compound low-solar-low-wind extremes in China.\",\"authors\":\"Licheng Wang, Yawen Liu, Lei Zhao, Xi Lu, Liangdian Huang, Yana Jin, Steven J Davis, Amir Aghakouchak, Xin Huang, Tong Zhu, Yue Qin\",\"doi\":\"10.1093/nsr/nwae424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>China's pursuit of carbon neutrality targets hinges on a profound shift towards low-carbon energy, primarily reliant on intermittent and variable, yet crucial, solar and wind power sources. In particular, low-solar-low-wind (LSLW) compound extremes present a critical yet largely ignored threat to the reliability of renewable electricity generation. While existing studies have largely evaluated the impacts of average climate-induced changes in renewable energy resources, comprehensive analyses of the compound extremes and, particularly, the underpinning dynamic mechanisms remain scarce. Here we show the dynamic evolution of compound LSLW extremes and their underlying mechanisms across China via coupling multi-model simulations with diagnostic analysis. Our results unveil a strong topographic dependence in the frequency of compound LSLW extremes, with a national average frequency of 16.4 (10th-90th percentile interval ranges from 5.3 to 32.6) days/yr, when renewable energy resources in eastern China are particularly compromised (∼80% lower than that under an average climate). We reveal a striking increase in the frequency of LSLW extremes, ranging from 12.4% under SSP126 to 60.2% under SSP370, primarily driven by both renewable energy resource declines and increasingly heavily-tailed distributions, resulting from weakened meridional temperature (pressure) gradient, increased frequency of extremely dense cloud cover and additional distinctive influence of increased aerosols under SSP370. Our study underscores the urgency of preparing for significantly heightened occurrences of LSLW events in a warmer future, emphasizing that such climate-induced compound LSLW extreme changes are not simply by chance, but rather projectable, thereby underscoring the need for proactive adaptation strategies. Such insights are crucial for countries navigating a similar transition towards renewable energy.</p>\",\"PeriodicalId\":18842,\"journal\":{\"name\":\"National Science Review\",\"volume\":\"12 1\",\"pages\":\"nwae424\"},\"PeriodicalIF\":16.3000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11715666/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"National Science Review\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1093/nsr/nwae424\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"National Science Review","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1093/nsr/nwae424","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

中国对碳中和目标的追求取决于向低碳能源的深刻转变,主要依赖间歇性、可变但至关重要的太阳能和风能。特别是,低太阳能低风能(LSLW)复合极端情况对可再生能源发电的可靠性构成了一个严重但在很大程度上被忽视的威胁。虽然现有的研究在很大程度上评估了气候引起的平均变化对可再生能源的影响,但对复合极端情况的综合分析,特别是对基本动态机制的分析仍然很少。本文通过多模式模拟与诊断分析相结合的方法,揭示了中国地区复合极端低潮的动态演变及其潜在机制。我们的研究结果揭示了复合LSLW极端事件的频率具有很强的地形依赖性,全国平均频率为16.4天/年(第10 -90百分位数间隔为5.3至32.6),当中国东部的可再生能源资源受到特别损害时(比平均气候下低约80%)。我们发现,极端LSLW的频率显著增加,从SSP126下的12.4%增加到SSP370下的60.2%,这主要是由可再生能源资源减少和经向温度(压力)梯度减弱、极密云覆盖频率增加以及SSP370下气溶胶增加的额外显著影响导致的重尾分布的增加所驱动的。我们的研究强调了在一个更温暖的未来,为LSLW事件显著增加的发生做好准备的紧迫性,强调了这种由气候引起的复合LSLW极端变化不仅仅是偶然的,而是可以预测的,因此强调了主动适应策略的必要性。这些洞见对于正在进行类似的向可再生能源转型的国家至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unraveling climate change-induced compound low-solar-low-wind extremes in China.

China's pursuit of carbon neutrality targets hinges on a profound shift towards low-carbon energy, primarily reliant on intermittent and variable, yet crucial, solar and wind power sources. In particular, low-solar-low-wind (LSLW) compound extremes present a critical yet largely ignored threat to the reliability of renewable electricity generation. While existing studies have largely evaluated the impacts of average climate-induced changes in renewable energy resources, comprehensive analyses of the compound extremes and, particularly, the underpinning dynamic mechanisms remain scarce. Here we show the dynamic evolution of compound LSLW extremes and their underlying mechanisms across China via coupling multi-model simulations with diagnostic analysis. Our results unveil a strong topographic dependence in the frequency of compound LSLW extremes, with a national average frequency of 16.4 (10th-90th percentile interval ranges from 5.3 to 32.6) days/yr, when renewable energy resources in eastern China are particularly compromised (∼80% lower than that under an average climate). We reveal a striking increase in the frequency of LSLW extremes, ranging from 12.4% under SSP126 to 60.2% under SSP370, primarily driven by both renewable energy resource declines and increasingly heavily-tailed distributions, resulting from weakened meridional temperature (pressure) gradient, increased frequency of extremely dense cloud cover and additional distinctive influence of increased aerosols under SSP370. Our study underscores the urgency of preparing for significantly heightened occurrences of LSLW events in a warmer future, emphasizing that such climate-induced compound LSLW extreme changes are not simply by chance, but rather projectable, thereby underscoring the need for proactive adaptation strategies. Such insights are crucial for countries navigating a similar transition towards renewable energy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
National Science Review
National Science Review MULTIDISCIPLINARY SCIENCES-
CiteScore
24.10
自引率
1.90%
发文量
249
审稿时长
13 weeks
期刊介绍: National Science Review (NSR; ISSN abbreviation: Natl. Sci. Rev.) is an English-language peer-reviewed multidisciplinary open-access scientific journal published by Oxford University Press under the auspices of the Chinese Academy of Sciences.According to Journal Citation Reports, its 2021 impact factor was 23.178. National Science Review publishes both review articles and perspectives as well as original research in the form of brief communications and research articles.
期刊最新文献
US-China cooperation and competition in science and technology. Cretaceous chewing-louse eggs on enantiornithine birds. Element cycling by environmental viruses. Reversible biomass aerogels with flame retardancy and smart elasticity. Core factor of NEXT complex, ZCCHC8, governs the silencing of LINE1 during spermatogenesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1