{"title":"层次核壳结构NiO@Cu2O-CF有效的非酶电化学葡萄糖检测。","authors":"Yueyun Huang, Jiahua You, Yingru Ding, Yun Xie, Ting Wang, Fanglong Zhu, Weiping Gong, Zhenting Zhao","doi":"10.3390/nano15010047","DOIUrl":null,"url":null,"abstract":"<p><p>Non-enzymatic glucose detection is an effective strategy to control the blood glucose level of diabetic patients. A novel hierarchical core-shell structure of nickel hydroxide shell coated copper hydroxide core based on copper foam (Ni(OH)<sub>2</sub>@Cu(OH)<sub>2</sub>-CF) was fabricated and derived from NiO@Cu<sub>2</sub>O-CF for glucose sensing. Cyclic voltammetry and amperometry experiments have demonstrated the efficient electrochemical catalysis of glucose under alkaline conditions. The measurement displays that the fabricated sensor exhibits a detection scale of 0.005-4.5 mM with a detection sensitivity of 4.67 µA/µM/cm<sup>2</sup>. It has remarkable response/recovery times in respect of 750 μM glucose (1.0 s/3.5 s). Moreover, the NiO@Cu<sub>2</sub>O-CF shows significant selectivity, reliable reproducibility and long-term stability for glucose determination, suggesting it is a suitable candidate for further applications.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"15 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11723071/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Hierarchical Core-Shell Structure of NiO@Cu<sub>2</sub>O-CF for Effective Non-Enzymatic Electrochemical Glucose Detection.\",\"authors\":\"Yueyun Huang, Jiahua You, Yingru Ding, Yun Xie, Ting Wang, Fanglong Zhu, Weiping Gong, Zhenting Zhao\",\"doi\":\"10.3390/nano15010047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Non-enzymatic glucose detection is an effective strategy to control the blood glucose level of diabetic patients. A novel hierarchical core-shell structure of nickel hydroxide shell coated copper hydroxide core based on copper foam (Ni(OH)<sub>2</sub>@Cu(OH)<sub>2</sub>-CF) was fabricated and derived from NiO@Cu<sub>2</sub>O-CF for glucose sensing. Cyclic voltammetry and amperometry experiments have demonstrated the efficient electrochemical catalysis of glucose under alkaline conditions. The measurement displays that the fabricated sensor exhibits a detection scale of 0.005-4.5 mM with a detection sensitivity of 4.67 µA/µM/cm<sup>2</sup>. It has remarkable response/recovery times in respect of 750 μM glucose (1.0 s/3.5 s). Moreover, the NiO@Cu<sub>2</sub>O-CF shows significant selectivity, reliable reproducibility and long-term stability for glucose determination, suggesting it is a suitable candidate for further applications.</p>\",\"PeriodicalId\":18966,\"journal\":{\"name\":\"Nanomaterials\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11723071/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomaterials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/nano15010047\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano15010047","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A Hierarchical Core-Shell Structure of NiO@Cu2O-CF for Effective Non-Enzymatic Electrochemical Glucose Detection.
Non-enzymatic glucose detection is an effective strategy to control the blood glucose level of diabetic patients. A novel hierarchical core-shell structure of nickel hydroxide shell coated copper hydroxide core based on copper foam (Ni(OH)2@Cu(OH)2-CF) was fabricated and derived from NiO@Cu2O-CF for glucose sensing. Cyclic voltammetry and amperometry experiments have demonstrated the efficient electrochemical catalysis of glucose under alkaline conditions. The measurement displays that the fabricated sensor exhibits a detection scale of 0.005-4.5 mM with a detection sensitivity of 4.67 µA/µM/cm2. It has remarkable response/recovery times in respect of 750 μM glucose (1.0 s/3.5 s). Moreover, the NiO@Cu2O-CF shows significant selectivity, reliable reproducibility and long-term stability for glucose determination, suggesting it is a suitable candidate for further applications.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.