在中国北方荒漠草原长期放牧试验中,高放牧压力加速了群落聚集的变化。

IF 2.3 2区 环境科学与生态学 Q2 ECOLOGY Oecologia Pub Date : 2025-01-08 DOI:10.1007/s00442-024-05647-3
Saruul Kang, Zhongwu Wang, Xulin Guo, Mengli Zhao, Saqila Wu, Xia Zhang, Lin Zhu, Guodong Han
{"title":"在中国北方荒漠草原长期放牧试验中,高放牧压力加速了群落聚集的变化。","authors":"Saruul Kang, Zhongwu Wang, Xulin Guo, Mengli Zhao, Saqila Wu, Xia Zhang, Lin Zhu, Guodong Han","doi":"10.1007/s00442-024-05647-3","DOIUrl":null,"url":null,"abstract":"<p><p>Although numerous studies have shown that grazing gives rise to community succession from the communities or even species perspective, there is a lack of discussion about how grazing drives community assembly based on plant functional traits in a long-term experiment. We find different grazing intensities lead to temporal effects on trait-mediated multidimensional community assembly processes, including community-weighted trait mean (CWM), trait filtering, and trait distribution (divergence/convergence). CWM, trait filtering, and trait distribution of different traits transformed over the 16-year grazing experiment. Major findings include the following: (1) CWM changed rapidly under higher grazing intensity, and the removal of unsuitable traits from communities over time was accelerated with higher grazing intensity, such as higher specific leaf area (SLA), rich epidermal appendages (PAP), deep root system (RD), and growth form (shrub and subshrub) and dispersal mode (DM, e.g., insect spread) with higher scores. (2) Patterns of trait filtering strongly depended on grazing intensity and trait types, most traits, such as SLA, DM, PAP, RD, and onset of flowering (OFL), were filtered at high grazing intensity area, and effects of trait filtering in the community assembly process strengthened with grazing time. (3) Traits related to the cycling of biological matter, such as leaf area (LA), SLA, reproductive height (RH), photosynthetic (PHO), and GF more frequently diverged after long-term grazing, especially in higher grazing areas. Community assembly in intensely grazed ecosystems takes over a decade to support fundamental functions, highlighting the need for grazing intensity thresholds for sustainable grassland use.</p>","PeriodicalId":19473,"journal":{"name":"Oecologia","volume":"207 1","pages":"18"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High grazing pressure accelerates changes in community assembly over time in a long-term grazing experiment in the desert steppe of northern China.\",\"authors\":\"Saruul Kang, Zhongwu Wang, Xulin Guo, Mengli Zhao, Saqila Wu, Xia Zhang, Lin Zhu, Guodong Han\",\"doi\":\"10.1007/s00442-024-05647-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Although numerous studies have shown that grazing gives rise to community succession from the communities or even species perspective, there is a lack of discussion about how grazing drives community assembly based on plant functional traits in a long-term experiment. We find different grazing intensities lead to temporal effects on trait-mediated multidimensional community assembly processes, including community-weighted trait mean (CWM), trait filtering, and trait distribution (divergence/convergence). CWM, trait filtering, and trait distribution of different traits transformed over the 16-year grazing experiment. Major findings include the following: (1) CWM changed rapidly under higher grazing intensity, and the removal of unsuitable traits from communities over time was accelerated with higher grazing intensity, such as higher specific leaf area (SLA), rich epidermal appendages (PAP), deep root system (RD), and growth form (shrub and subshrub) and dispersal mode (DM, e.g., insect spread) with higher scores. (2) Patterns of trait filtering strongly depended on grazing intensity and trait types, most traits, such as SLA, DM, PAP, RD, and onset of flowering (OFL), were filtered at high grazing intensity area, and effects of trait filtering in the community assembly process strengthened with grazing time. (3) Traits related to the cycling of biological matter, such as leaf area (LA), SLA, reproductive height (RH), photosynthetic (PHO), and GF more frequently diverged after long-term grazing, especially in higher grazing areas. Community assembly in intensely grazed ecosystems takes over a decade to support fundamental functions, highlighting the need for grazing intensity thresholds for sustainable grassland use.</p>\",\"PeriodicalId\":19473,\"journal\":{\"name\":\"Oecologia\",\"volume\":\"207 1\",\"pages\":\"18\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oecologia\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s00442-024-05647-3\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oecologia","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s00442-024-05647-3","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

虽然已有大量研究表明,从群落甚至物种的角度来看,放牧会引起群落演替,但在长期的实验中,放牧如何基于植物功能性状驱动群落组装的讨论还很缺乏。研究发现,不同放牧强度对群落加权特征均值(CWM)、特征过滤和特征分布(发散/收敛)等多维群落组装过程具有时间效应。16年放牧试验中不同性状转化的CWM、性状过滤和性状分布。主要发现如下:(1)高放牧强度下CWM变化迅速,高放牧强度下更高的比叶面积(SLA)、丰富的表皮附属物(PAP)、深根系(RD)、生长形式(灌木和亚灌木)和传播方式(DM,如昆虫传播)等不适宜性状随时间的推移被加速去除。(2)性状过滤模式强烈依赖于放牧强度和性状类型,SLA、DM、PAP、RD和开花时间(OFL)等大部分性状在高放牧强度区域被过滤,性状过滤在群落聚集过程中的作用随着放牧时间的延长而增强。(3)与生物物质循环有关的叶面积(LA)、SLA、繁殖高度(RH)、光合作用(PHO)和GF等性状在长期放牧后分化更为频繁,特别是在高放牧区。在密集放牧生态系统中,群落聚集需要十多年的时间来支持基本功能,这突出了对可持续草地利用的放牧强度阈值的需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High grazing pressure accelerates changes in community assembly over time in a long-term grazing experiment in the desert steppe of northern China.

Although numerous studies have shown that grazing gives rise to community succession from the communities or even species perspective, there is a lack of discussion about how grazing drives community assembly based on plant functional traits in a long-term experiment. We find different grazing intensities lead to temporal effects on trait-mediated multidimensional community assembly processes, including community-weighted trait mean (CWM), trait filtering, and trait distribution (divergence/convergence). CWM, trait filtering, and trait distribution of different traits transformed over the 16-year grazing experiment. Major findings include the following: (1) CWM changed rapidly under higher grazing intensity, and the removal of unsuitable traits from communities over time was accelerated with higher grazing intensity, such as higher specific leaf area (SLA), rich epidermal appendages (PAP), deep root system (RD), and growth form (shrub and subshrub) and dispersal mode (DM, e.g., insect spread) with higher scores. (2) Patterns of trait filtering strongly depended on grazing intensity and trait types, most traits, such as SLA, DM, PAP, RD, and onset of flowering (OFL), were filtered at high grazing intensity area, and effects of trait filtering in the community assembly process strengthened with grazing time. (3) Traits related to the cycling of biological matter, such as leaf area (LA), SLA, reproductive height (RH), photosynthetic (PHO), and GF more frequently diverged after long-term grazing, especially in higher grazing areas. Community assembly in intensely grazed ecosystems takes over a decade to support fundamental functions, highlighting the need for grazing intensity thresholds for sustainable grassland use.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Oecologia
Oecologia 环境科学-生态学
CiteScore
5.10
自引率
0.00%
发文量
192
审稿时长
5.3 months
期刊介绍: Oecologia publishes innovative ecological research of international interest. We seek reviews, advances in methodology, and original contributions, emphasizing the following areas: Population ecology, Plant-microbe-animal interactions, Ecosystem ecology, Community ecology, Global change ecology, Conservation ecology, Behavioral ecology and Physiological Ecology. In general, studies that are purely descriptive, mathematical, documentary, and/or natural history will not be considered.
期刊最新文献
High-elevation birds grow more slowly but to heavier weights than low-elevation birds. Comparison of seed traits between an invasive plant and its native competitor along a latitudinal gradient. Adaptive divergence in diets between the sexes in a tropical snake (Stegonotus australis, Colubridae). The trade-off between photosynthetic rate and thallus moisture-demand explains lichen habitat association with the temperate rainforest. Infection intensity and severity of Ranavirus transmission in juvenile wood frogs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1