Ji Seob Kim, Hyeon Jae Kwon, In Sun Hwang, Young Hwa Lee, Kyung-Noh Yoon, Hee-Woong Yun, Jae-Hyeok Jang, Seo Jeong Kim, Zhoodatova Aiana, Seungwoo Kim, Minhee Moon, Bongki Kim, Byoung Ju Kim, Byung-Hyun Cha
{"title":"猪软骨脱细胞基质对骨关节炎的免疫调节作用。","authors":"Ji Seob Kim, Hyeon Jae Kwon, In Sun Hwang, Young Hwa Lee, Kyung-Noh Yoon, Hee-Woong Yun, Jae-Hyeok Jang, Seo Jeong Kim, Zhoodatova Aiana, Seungwoo Kim, Minhee Moon, Bongki Kim, Byoung Ju Kim, Byung-Hyun Cha","doi":"10.1007/s13770-024-00687-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Pain reduction, immunomodulation, and cartilage repair are key therapeutic goals in osteoarthritis (OA) treatment. In this study, we evaluated the therapeutic effects of porcine cartilage acellularized matrix (pCAM) derived from naive tissue and compared it with the synthetic material polynucleotides (PN) for OA treatment.</p><p><strong>Methods: </strong>pCAM was produced from porcine cartilage through physicochemical processing. LC-MS protein profiling identified the key proteins. In vitro experiments involved treating human synovial cell with pCAM and PN to assess cell viability and reductions in pro-inflammatory cytokines (IL-1β and IL-6). In vivo studies utilized a rat DMM-induced OA model. Pain was evaluated in weight-bearing tests, and inflammation reduction was confirmed using specific macrophage markers of CD68, CD86, and CD163 in immunohistochemical staining of synovial tissue. Cartilage regeneration was evaluated by histopathological analyses.</p><p><strong>Results: </strong>The major protein components of pCAM include factors integral to cartilage and ECM integrity. They also contain proteins that help reduce inflammation. In vitro studies revealed a decrease in pro-inflammatory cytokines and survival of synovial cells were observed. In vivo treatment with pCAM resulted in a reduction of pain and inflammation, while promoting cartilage regeneration, thereby accelerating the healing process in OA.</p><p><strong>Conclusion: </strong>Our findings suggest that pCAM may contribute to the treatment of OA by alleviating synovial inflammation and supporting cartilage regeneration, thereby addressing both the inflammatory and degenerative aspects of the disease.</p>","PeriodicalId":23126,"journal":{"name":"Tissue engineering and regenerative medicine","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Immunomodulation Effects of Porcine Cartilage Acellularized Matrix (pCAM) for Osteoarthritis Treatment.\",\"authors\":\"Ji Seob Kim, Hyeon Jae Kwon, In Sun Hwang, Young Hwa Lee, Kyung-Noh Yoon, Hee-Woong Yun, Jae-Hyeok Jang, Seo Jeong Kim, Zhoodatova Aiana, Seungwoo Kim, Minhee Moon, Bongki Kim, Byoung Ju Kim, Byung-Hyun Cha\",\"doi\":\"10.1007/s13770-024-00687-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Pain reduction, immunomodulation, and cartilage repair are key therapeutic goals in osteoarthritis (OA) treatment. In this study, we evaluated the therapeutic effects of porcine cartilage acellularized matrix (pCAM) derived from naive tissue and compared it with the synthetic material polynucleotides (PN) for OA treatment.</p><p><strong>Methods: </strong>pCAM was produced from porcine cartilage through physicochemical processing. LC-MS protein profiling identified the key proteins. In vitro experiments involved treating human synovial cell with pCAM and PN to assess cell viability and reductions in pro-inflammatory cytokines (IL-1β and IL-6). In vivo studies utilized a rat DMM-induced OA model. Pain was evaluated in weight-bearing tests, and inflammation reduction was confirmed using specific macrophage markers of CD68, CD86, and CD163 in immunohistochemical staining of synovial tissue. Cartilage regeneration was evaluated by histopathological analyses.</p><p><strong>Results: </strong>The major protein components of pCAM include factors integral to cartilage and ECM integrity. They also contain proteins that help reduce inflammation. In vitro studies revealed a decrease in pro-inflammatory cytokines and survival of synovial cells were observed. In vivo treatment with pCAM resulted in a reduction of pain and inflammation, while promoting cartilage regeneration, thereby accelerating the healing process in OA.</p><p><strong>Conclusion: </strong>Our findings suggest that pCAM may contribute to the treatment of OA by alleviating synovial inflammation and supporting cartilage regeneration, thereby addressing both the inflammatory and degenerative aspects of the disease.</p>\",\"PeriodicalId\":23126,\"journal\":{\"name\":\"Tissue engineering and regenerative medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tissue engineering and regenerative medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13770-024-00687-5\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue engineering and regenerative medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13770-024-00687-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
Immunomodulation Effects of Porcine Cartilage Acellularized Matrix (pCAM) for Osteoarthritis Treatment.
Background: Pain reduction, immunomodulation, and cartilage repair are key therapeutic goals in osteoarthritis (OA) treatment. In this study, we evaluated the therapeutic effects of porcine cartilage acellularized matrix (pCAM) derived from naive tissue and compared it with the synthetic material polynucleotides (PN) for OA treatment.
Methods: pCAM was produced from porcine cartilage through physicochemical processing. LC-MS protein profiling identified the key proteins. In vitro experiments involved treating human synovial cell with pCAM and PN to assess cell viability and reductions in pro-inflammatory cytokines (IL-1β and IL-6). In vivo studies utilized a rat DMM-induced OA model. Pain was evaluated in weight-bearing tests, and inflammation reduction was confirmed using specific macrophage markers of CD68, CD86, and CD163 in immunohistochemical staining of synovial tissue. Cartilage regeneration was evaluated by histopathological analyses.
Results: The major protein components of pCAM include factors integral to cartilage and ECM integrity. They also contain proteins that help reduce inflammation. In vitro studies revealed a decrease in pro-inflammatory cytokines and survival of synovial cells were observed. In vivo treatment with pCAM resulted in a reduction of pain and inflammation, while promoting cartilage regeneration, thereby accelerating the healing process in OA.
Conclusion: Our findings suggest that pCAM may contribute to the treatment of OA by alleviating synovial inflammation and supporting cartilage regeneration, thereby addressing both the inflammatory and degenerative aspects of the disease.
期刊介绍:
Tissue Engineering and Regenerative Medicine (Tissue Eng Regen Med, TERM), the official journal of the Korean Tissue Engineering and Regenerative Medicine Society, is a publication dedicated to providing research- based solutions to issues related to human diseases. This journal publishes articles that report substantial information and original findings on tissue engineering, medical biomaterials, cells therapy, stem cell biology and regenerative medicine.