Christian Zevallos-Delgado, Taye Tolu Mekonnen, Chaitanya Duvvuri, Leana Rohman, Justin Schumacher, Manmohan Singh, Salavat R Aglyamov, Michael D Twa, Jean-Marie Parel, Giuliano Scarcelli, Fabrice Manns, Kirill V Larin
{"title":"晶体透镜的声辐射力光学相干弹性成像:安全性。","authors":"Christian Zevallos-Delgado, Taye Tolu Mekonnen, Chaitanya Duvvuri, Leana Rohman, Justin Schumacher, Manmohan Singh, Salavat R Aglyamov, Michael D Twa, Jean-Marie Parel, Giuliano Scarcelli, Fabrice Manns, Kirill V Larin","doi":"10.1167/tvst.13.12.36","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To assess the safety of acoustic radiation force optical coherence elastography in the crystalline lens in situ.</p><p><strong>Methods: </strong>Acoustic radiation force (ARF) produced by an immersion single-element ultrasound transducer (nominal frequency = 3.5 MHz) was characterized using a needle hydrophone and used for optical coherence elastography (OCE) of the crystalline lens. Preamplified signals at 50, 100, 250, 500, 750, 1000, and 1250 mV peak amplitude were tested on ex vivo porcine eyes (n = 21). Three-dimensional optical coherence tomography (OCT) and confocal microscopy images were acquired before and after ARF exposure to each signal amplitude to determine damage.</p><p><strong>Results: </strong>The acoustic intensity of the ultrasound transducer at 100-mV preamplified peak amplitude input demonstrated a signal-to-noise ratio high enough for tracking elastic wave propagation in the lens and spatial-peak pulse-average (SPPA) intensity of 24.1 W/cm² and mechanical index (MI) of 0.46. The SPPA intensity was lower than the U.S. Food and Drug Administration (FDA) safety limit (28 W/cm2), but the MI was twice the safety limit (0.23). OCT structural and confocal microscopy images showed damage only at levels exceeding 1150 W/cm2 and 3.2 for SPPA intensity and MI, respectively.</p><p><strong>Conclusions: </strong>OCT and confocal microscopy showed that, even when the intensity exceeded FDA recommendations (>100 mV), no noticeable damage was observed. Although a further reduction in acoustic intensity is necessary to meet FDA safety limits, ARF-based elastography shows promise for safe clinical translation in quantitatively characterizing lenticular biomechanical properties.</p><p><strong>Translational relevance: </strong>This work assessed the safety standards for acoustic radiation force to be used in human lens elastography according to the FDA safety limits.</p>","PeriodicalId":23322,"journal":{"name":"Translational Vision Science & Technology","volume":"13 12","pages":"36"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11684484/pdf/","citationCount":"0","resultStr":"{\"title\":\"Acoustic Radiation Force Optical Coherence Elastography of the Crystalline Lens: Safety.\",\"authors\":\"Christian Zevallos-Delgado, Taye Tolu Mekonnen, Chaitanya Duvvuri, Leana Rohman, Justin Schumacher, Manmohan Singh, Salavat R Aglyamov, Michael D Twa, Jean-Marie Parel, Giuliano Scarcelli, Fabrice Manns, Kirill V Larin\",\"doi\":\"10.1167/tvst.13.12.36\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>To assess the safety of acoustic radiation force optical coherence elastography in the crystalline lens in situ.</p><p><strong>Methods: </strong>Acoustic radiation force (ARF) produced by an immersion single-element ultrasound transducer (nominal frequency = 3.5 MHz) was characterized using a needle hydrophone and used for optical coherence elastography (OCE) of the crystalline lens. Preamplified signals at 50, 100, 250, 500, 750, 1000, and 1250 mV peak amplitude were tested on ex vivo porcine eyes (n = 21). Three-dimensional optical coherence tomography (OCT) and confocal microscopy images were acquired before and after ARF exposure to each signal amplitude to determine damage.</p><p><strong>Results: </strong>The acoustic intensity of the ultrasound transducer at 100-mV preamplified peak amplitude input demonstrated a signal-to-noise ratio high enough for tracking elastic wave propagation in the lens and spatial-peak pulse-average (SPPA) intensity of 24.1 W/cm² and mechanical index (MI) of 0.46. The SPPA intensity was lower than the U.S. Food and Drug Administration (FDA) safety limit (28 W/cm2), but the MI was twice the safety limit (0.23). OCT structural and confocal microscopy images showed damage only at levels exceeding 1150 W/cm2 and 3.2 for SPPA intensity and MI, respectively.</p><p><strong>Conclusions: </strong>OCT and confocal microscopy showed that, even when the intensity exceeded FDA recommendations (>100 mV), no noticeable damage was observed. Although a further reduction in acoustic intensity is necessary to meet FDA safety limits, ARF-based elastography shows promise for safe clinical translation in quantitatively characterizing lenticular biomechanical properties.</p><p><strong>Translational relevance: </strong>This work assessed the safety standards for acoustic radiation force to be used in human lens elastography according to the FDA safety limits.</p>\",\"PeriodicalId\":23322,\"journal\":{\"name\":\"Translational Vision Science & Technology\",\"volume\":\"13 12\",\"pages\":\"36\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11684484/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Translational Vision Science & Technology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1167/tvst.13.12.36\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Vision Science & Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1167/tvst.13.12.36","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
Acoustic Radiation Force Optical Coherence Elastography of the Crystalline Lens: Safety.
Purpose: To assess the safety of acoustic radiation force optical coherence elastography in the crystalline lens in situ.
Methods: Acoustic radiation force (ARF) produced by an immersion single-element ultrasound transducer (nominal frequency = 3.5 MHz) was characterized using a needle hydrophone and used for optical coherence elastography (OCE) of the crystalline lens. Preamplified signals at 50, 100, 250, 500, 750, 1000, and 1250 mV peak amplitude were tested on ex vivo porcine eyes (n = 21). Three-dimensional optical coherence tomography (OCT) and confocal microscopy images were acquired before and after ARF exposure to each signal amplitude to determine damage.
Results: The acoustic intensity of the ultrasound transducer at 100-mV preamplified peak amplitude input demonstrated a signal-to-noise ratio high enough for tracking elastic wave propagation in the lens and spatial-peak pulse-average (SPPA) intensity of 24.1 W/cm² and mechanical index (MI) of 0.46. The SPPA intensity was lower than the U.S. Food and Drug Administration (FDA) safety limit (28 W/cm2), but the MI was twice the safety limit (0.23). OCT structural and confocal microscopy images showed damage only at levels exceeding 1150 W/cm2 and 3.2 for SPPA intensity and MI, respectively.
Conclusions: OCT and confocal microscopy showed that, even when the intensity exceeded FDA recommendations (>100 mV), no noticeable damage was observed. Although a further reduction in acoustic intensity is necessary to meet FDA safety limits, ARF-based elastography shows promise for safe clinical translation in quantitatively characterizing lenticular biomechanical properties.
Translational relevance: This work assessed the safety standards for acoustic radiation force to be used in human lens elastography according to the FDA safety limits.
期刊介绍:
Translational Vision Science & Technology (TVST), an official journal of the Association for Research in Vision and Ophthalmology (ARVO), an international organization whose purpose is to advance research worldwide into understanding the visual system and preventing, treating and curing its disorders, is an online, open access, peer-reviewed journal emphasizing multidisciplinary research that bridges the gap between basic research and clinical care. A highly qualified and diverse group of Associate Editors and Editorial Board Members is led by Editor-in-Chief Marco Zarbin, MD, PhD, FARVO.
The journal covers a broad spectrum of work, including but not limited to:
Applications of stem cell technology for regenerative medicine,
Development of new animal models of human diseases,
Tissue bioengineering,
Chemical engineering to improve virus-based gene delivery,
Nanotechnology for drug delivery,
Design and synthesis of artificial extracellular matrices,
Development of a true microsurgical operating environment,
Refining data analysis algorithms to improve in vivo imaging technology,
Results of Phase 1 clinical trials,
Reverse translational ("bedside to bench") research.
TVST seeks manuscripts from scientists and clinicians with diverse backgrounds ranging from basic chemistry to ophthalmic surgery that will advance or change the way we understand and/or treat vision-threatening diseases. TVST encourages the use of color, multimedia, hyperlinks, program code and other digital enhancements.