{"title":"微带贴片天线类型的灵敏度分析:开槽和通孔微带贴片天线。","authors":"Swati Todi, Poonam Agarwal","doi":"10.1007/s13534-024-00443-7","DOIUrl":null,"url":null,"abstract":"<p><p>This paper demonstrates real-time, label-free, contact-based glucose sensor design of inset-fed Microstrip Patch Antenna (MSPA) genres: Slotted Microstrip Patch Antenna (SMSPA) and Through-hole Microstrip Patch Antenna (THMSPA). In SMSPA, multiple slots are created along the width edge of the patch. In THMSPA, a through-hole is introduced across the antenna including all the layers: patch, substrate and ground conductor of the MSPA. The proposed designs are geared towards enhancing the electric field distribution along the patch, and to utilize that region as the sensing area. The electric field intensity at the resonant frequency is 45505V/m, 53145V/m and 71348V/m for MSPA, SMSPA and THMSPA, respectively. Experimental sensitivity of the proposed glucose sensor increased from 8.901dB/g/ml to 23.575dB/g/ml and 41.525dB/g/ml for SMSPA and THMSPA, respectively. There is significant enhancement in sensitivity in terms of MHz/g/ml for MSPA, SMSPA and THMSPA which is 112.286, 174.857 and 548.571, respectively.</p>","PeriodicalId":46898,"journal":{"name":"Biomedical Engineering Letters","volume":"15 1","pages":"249-260"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11703787/pdf/","citationCount":"0","resultStr":"{\"title\":\"Sensitivity Analysis of Microstrip Patch Antenna Genres: Slotted and Through-hole Microstrip Patch Antenna.\",\"authors\":\"Swati Todi, Poonam Agarwal\",\"doi\":\"10.1007/s13534-024-00443-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper demonstrates real-time, label-free, contact-based glucose sensor design of inset-fed Microstrip Patch Antenna (MSPA) genres: Slotted Microstrip Patch Antenna (SMSPA) and Through-hole Microstrip Patch Antenna (THMSPA). In SMSPA, multiple slots are created along the width edge of the patch. In THMSPA, a through-hole is introduced across the antenna including all the layers: patch, substrate and ground conductor of the MSPA. The proposed designs are geared towards enhancing the electric field distribution along the patch, and to utilize that region as the sensing area. The electric field intensity at the resonant frequency is 45505V/m, 53145V/m and 71348V/m for MSPA, SMSPA and THMSPA, respectively. Experimental sensitivity of the proposed glucose sensor increased from 8.901dB/g/ml to 23.575dB/g/ml and 41.525dB/g/ml for SMSPA and THMSPA, respectively. There is significant enhancement in sensitivity in terms of MHz/g/ml for MSPA, SMSPA and THMSPA which is 112.286, 174.857 and 548.571, respectively.</p>\",\"PeriodicalId\":46898,\"journal\":{\"name\":\"Biomedical Engineering Letters\",\"volume\":\"15 1\",\"pages\":\"249-260\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11703787/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Engineering Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13534-024-00443-7\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Engineering Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13534-024-00443-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Sensitivity Analysis of Microstrip Patch Antenna Genres: Slotted and Through-hole Microstrip Patch Antenna.
This paper demonstrates real-time, label-free, contact-based glucose sensor design of inset-fed Microstrip Patch Antenna (MSPA) genres: Slotted Microstrip Patch Antenna (SMSPA) and Through-hole Microstrip Patch Antenna (THMSPA). In SMSPA, multiple slots are created along the width edge of the patch. In THMSPA, a through-hole is introduced across the antenna including all the layers: patch, substrate and ground conductor of the MSPA. The proposed designs are geared towards enhancing the electric field distribution along the patch, and to utilize that region as the sensing area. The electric field intensity at the resonant frequency is 45505V/m, 53145V/m and 71348V/m for MSPA, SMSPA and THMSPA, respectively. Experimental sensitivity of the proposed glucose sensor increased from 8.901dB/g/ml to 23.575dB/g/ml and 41.525dB/g/ml for SMSPA and THMSPA, respectively. There is significant enhancement in sensitivity in terms of MHz/g/ml for MSPA, SMSPA and THMSPA which is 112.286, 174.857 and 548.571, respectively.
期刊介绍:
Biomedical Engineering Letters (BMEL) aims to present the innovative experimental science and technological development in the biomedical field as well as clinical application of new development. The article must contain original biomedical engineering content, defined as development, theoretical analysis, and evaluation/validation of a new technique. BMEL publishes the following types of papers: original articles, review articles, editorials, and letters to the editor. All the papers are reviewed in single-blind fashion.