HyunSub Kim, Chunghwan Kim, Chaeyoon Kim, HwyKuen Kwak, Chang-Hwan Im
{"title":"虚拟现实应用中基于眼电术识别的眼书写模式的用户认证新方法。","authors":"HyunSub Kim, Chunghwan Kim, Chaeyoon Kim, HwyKuen Kwak, Chang-Hwan Im","doi":"10.1007/s13534-024-00426-8","DOIUrl":null,"url":null,"abstract":"<p><p>Demand for user authentication in virtual reality (VR) applications is increasing such as in-app payments, password manager, and access to private data. Traditionally, hand controllers have been widely used for the user authentication in VR environment, with which the users can typewrite a password or draw a pre-registered pattern; however, the conventional approaches are generally inconvenient and time-consuming. In this study, we proposed a new user authentication method based on eye-writing patterns identified using electrooculogram (EOG) recorded from four locations around the eyes in contact with the face-pad of a VR headset. EOG data acquired during eye-writing a specific pattern are converted into a ten-dimensional vector, named a similarity vector, by calculating similarity values between the EOG data for the current pattern and ten pre-defined template patterns using dynamic positional warping. If the specific pattern corresponds to password, the similarity vector will have shorter distance to a similarity vector of the pre-registered password than an individually pre-determined threshold value. Nineteen participants were instructed to eye-write ten template patterns and five designated patterns to evaluate the performance of the proposed method. A specific user's similarity vectors were computed using the other users' template EOG data, employing the leave-one-subject-out cross-validation scheme. The proposed method exhibited an average accuracy of 97.74%, with a false accept rate of 1.31% and a false reject rate of 3.50%. The proposed method would provide a new effective way to secure private data in practical VR applications with edge devices because it does not require heavy computational burden.</p>","PeriodicalId":46898,"journal":{"name":"Biomedical Engineering Letters","volume":"15 1","pages":"95-104"},"PeriodicalIF":3.2000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11703784/pdf/","citationCount":"0","resultStr":"{\"title\":\"New user authentication method based on eye-writing patterns identified from electrooculography for virtual reality applications.\",\"authors\":\"HyunSub Kim, Chunghwan Kim, Chaeyoon Kim, HwyKuen Kwak, Chang-Hwan Im\",\"doi\":\"10.1007/s13534-024-00426-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Demand for user authentication in virtual reality (VR) applications is increasing such as in-app payments, password manager, and access to private data. Traditionally, hand controllers have been widely used for the user authentication in VR environment, with which the users can typewrite a password or draw a pre-registered pattern; however, the conventional approaches are generally inconvenient and time-consuming. In this study, we proposed a new user authentication method based on eye-writing patterns identified using electrooculogram (EOG) recorded from four locations around the eyes in contact with the face-pad of a VR headset. EOG data acquired during eye-writing a specific pattern are converted into a ten-dimensional vector, named a similarity vector, by calculating similarity values between the EOG data for the current pattern and ten pre-defined template patterns using dynamic positional warping. If the specific pattern corresponds to password, the similarity vector will have shorter distance to a similarity vector of the pre-registered password than an individually pre-determined threshold value. Nineteen participants were instructed to eye-write ten template patterns and five designated patterns to evaluate the performance of the proposed method. A specific user's similarity vectors were computed using the other users' template EOG data, employing the leave-one-subject-out cross-validation scheme. The proposed method exhibited an average accuracy of 97.74%, with a false accept rate of 1.31% and a false reject rate of 3.50%. The proposed method would provide a new effective way to secure private data in practical VR applications with edge devices because it does not require heavy computational burden.</p>\",\"PeriodicalId\":46898,\"journal\":{\"name\":\"Biomedical Engineering Letters\",\"volume\":\"15 1\",\"pages\":\"95-104\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11703784/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Engineering Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13534-024-00426-8\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Engineering Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13534-024-00426-8","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
New user authentication method based on eye-writing patterns identified from electrooculography for virtual reality applications.
Demand for user authentication in virtual reality (VR) applications is increasing such as in-app payments, password manager, and access to private data. Traditionally, hand controllers have been widely used for the user authentication in VR environment, with which the users can typewrite a password or draw a pre-registered pattern; however, the conventional approaches are generally inconvenient and time-consuming. In this study, we proposed a new user authentication method based on eye-writing patterns identified using electrooculogram (EOG) recorded from four locations around the eyes in contact with the face-pad of a VR headset. EOG data acquired during eye-writing a specific pattern are converted into a ten-dimensional vector, named a similarity vector, by calculating similarity values between the EOG data for the current pattern and ten pre-defined template patterns using dynamic positional warping. If the specific pattern corresponds to password, the similarity vector will have shorter distance to a similarity vector of the pre-registered password than an individually pre-determined threshold value. Nineteen participants were instructed to eye-write ten template patterns and five designated patterns to evaluate the performance of the proposed method. A specific user's similarity vectors were computed using the other users' template EOG data, employing the leave-one-subject-out cross-validation scheme. The proposed method exhibited an average accuracy of 97.74%, with a false accept rate of 1.31% and a false reject rate of 3.50%. The proposed method would provide a new effective way to secure private data in practical VR applications with edge devices because it does not require heavy computational burden.
期刊介绍:
Biomedical Engineering Letters (BMEL) aims to present the innovative experimental science and technological development in the biomedical field as well as clinical application of new development. The article must contain original biomedical engineering content, defined as development, theoretical analysis, and evaluation/validation of a new technique. BMEL publishes the following types of papers: original articles, review articles, editorials, and letters to the editor. All the papers are reviewed in single-blind fashion.