基于神经网络控制的大脑启发学习规则:教程。

IF 3.2 4区 医学 Q2 ENGINEERING, BIOMEDICAL Biomedical Engineering Letters Pub Date : 2024-12-02 eCollection Date: 2025-01-01 DOI:10.1007/s13534-024-00436-6
Choongseop Lee, Yuntae Park, Sungmin Yoon, Jiwoon Lee, Youngho Cho, Cheolsoo Park
{"title":"基于神经网络控制的大脑启发学习规则:教程。","authors":"Choongseop Lee, Yuntae Park, Sungmin Yoon, Jiwoon Lee, Youngho Cho, Cheolsoo Park","doi":"10.1007/s13534-024-00436-6","DOIUrl":null,"url":null,"abstract":"<p><p>Robotic systems rely on spatio-temporal information to solve control tasks. With advancements in deep neural networks, reinforcement learning has significantly enhanced the performance of control tasks by leveraging deep learning techniques. However, as deep neural networks grow in complexity, they consume more energy and introduce greater latency. This complexity hampers their application in robotic systems that require real-time data processing. To address this issue, spiking neural networks, which emulate the biological brain by transmitting spatio-temporal information through spikes, have been developed alongside neuromorphic hardware that supports their operation. This paper reviews brain-inspired learning rules and examines the application of spiking neural networks in control tasks. We begin by exploring the features and implementations of biologically plausible spike-timing-dependent plasticity. Subsequently, we investigate the integration of a global third factor with spike-timing-dependent plasticity and its utilization and enhancements in both theoretical and applied research. We also discuss a method for locally applying a third factor that sophisticatedly modifies each synaptic weight through weight-based backpropagation. Finally, we review studies utilizing these learning rules to solve control tasks using spiking neural networks.</p>","PeriodicalId":46898,"journal":{"name":"Biomedical Engineering Letters","volume":"15 1","pages":"37-55"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11704115/pdf/","citationCount":"0","resultStr":"{\"title\":\"Brain-inspired learning rules for spiking neural network-based control: a tutorial.\",\"authors\":\"Choongseop Lee, Yuntae Park, Sungmin Yoon, Jiwoon Lee, Youngho Cho, Cheolsoo Park\",\"doi\":\"10.1007/s13534-024-00436-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Robotic systems rely on spatio-temporal information to solve control tasks. With advancements in deep neural networks, reinforcement learning has significantly enhanced the performance of control tasks by leveraging deep learning techniques. However, as deep neural networks grow in complexity, they consume more energy and introduce greater latency. This complexity hampers their application in robotic systems that require real-time data processing. To address this issue, spiking neural networks, which emulate the biological brain by transmitting spatio-temporal information through spikes, have been developed alongside neuromorphic hardware that supports their operation. This paper reviews brain-inspired learning rules and examines the application of spiking neural networks in control tasks. We begin by exploring the features and implementations of biologically plausible spike-timing-dependent plasticity. Subsequently, we investigate the integration of a global third factor with spike-timing-dependent plasticity and its utilization and enhancements in both theoretical and applied research. We also discuss a method for locally applying a third factor that sophisticatedly modifies each synaptic weight through weight-based backpropagation. Finally, we review studies utilizing these learning rules to solve control tasks using spiking neural networks.</p>\",\"PeriodicalId\":46898,\"journal\":{\"name\":\"Biomedical Engineering Letters\",\"volume\":\"15 1\",\"pages\":\"37-55\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11704115/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Engineering Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13534-024-00436-6\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Engineering Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13534-024-00436-6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

机器人系统依靠时空信息来解决控制任务。随着深度神经网络的进步,强化学习通过利用深度学习技术显著提高了控制任务的性能。然而,随着深度神经网络复杂性的增长,它们消耗更多的能量并引入更大的延迟。这种复杂性阻碍了它们在需要实时数据处理的机器人系统中的应用。为了解决这个问题,刺突神经网络,通过刺突传输时空信息来模拟生物大脑,已经与支持其操作的神经形态硬件一起开发出来。本文综述了脑启发学习规则,并探讨了脉冲神经网络在控制任务中的应用。我们首先探索生物学上似是而非的spike- time依赖性可塑性的特征和实现。随后,我们在理论和应用研究中探讨了全球第三因素与峰值时间依赖的可塑性的整合及其利用和增强。我们还讨论了一种局部应用第三个因素的方法,该因素通过基于权重的反向传播复杂地修改每个突触的权重。最后,我们回顾了利用这些学习规则来解决使用尖峰神经网络控制任务的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Brain-inspired learning rules for spiking neural network-based control: a tutorial.

Robotic systems rely on spatio-temporal information to solve control tasks. With advancements in deep neural networks, reinforcement learning has significantly enhanced the performance of control tasks by leveraging deep learning techniques. However, as deep neural networks grow in complexity, they consume more energy and introduce greater latency. This complexity hampers their application in robotic systems that require real-time data processing. To address this issue, spiking neural networks, which emulate the biological brain by transmitting spatio-temporal information through spikes, have been developed alongside neuromorphic hardware that supports their operation. This paper reviews brain-inspired learning rules and examines the application of spiking neural networks in control tasks. We begin by exploring the features and implementations of biologically plausible spike-timing-dependent plasticity. Subsequently, we investigate the integration of a global third factor with spike-timing-dependent plasticity and its utilization and enhancements in both theoretical and applied research. We also discuss a method for locally applying a third factor that sophisticatedly modifies each synaptic weight through weight-based backpropagation. Finally, we review studies utilizing these learning rules to solve control tasks using spiking neural networks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomedical Engineering Letters
Biomedical Engineering Letters ENGINEERING, BIOMEDICAL-
CiteScore
6.80
自引率
0.00%
发文量
34
期刊介绍: Biomedical Engineering Letters (BMEL) aims to present the innovative experimental science and technological development in the biomedical field as well as clinical application of new development. The article must contain original biomedical engineering content, defined as development, theoretical analysis, and evaluation/validation of a new technique. BMEL publishes the following types of papers: original articles, review articles, editorials, and letters to the editor. All the papers are reviewed in single-blind fashion.
期刊最新文献
Sensitivity Analysis of Microstrip Patch Antenna Genres: Slotted and Through-hole Microstrip Patch Antenna. Unveiling the endocrine connections of NAFLD: evidence from a comprehensive mendelian randomization study. Brain-inspired learning rules for spiking neural network-based control: a tutorial. Alzheimer's disease recognition based on waveform and spectral speech signal processing. A high performance heterogeneous hardware architecture for brain computer interface.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1