{"title":"基于真实头部模型的包络波神经电刺激仿真研究。","authors":"Yuhao Liu, Renling Zou, Liang Zhao, Linpeng Jin, Xiufang Hu, Xuezhi Yin","doi":"10.1007/s12021-024-09711-4","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, the modulation of brain neural activity by applied electromagnetic fields has become a hot spot in neuroscience research. Transcranial direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS) are two common non-invasive neuromodulation techniques. However, conventional tACS has limited stimulation effects in the deeper parts of the brain. In this study, a method of low and medium frequency envelope wave neurostimulation is proposed, and its effectiveness and safety are evaluated by simulation and human experiment. First, we built a real head model from head MRI image data and used the finite element method to calculate the current distribution of the envelope wave in the brain. Then, a single-compartment neuron model was constructed in NEURON software to simulate the action potential generation of neurons under different frequencies of electrical stimulation. Finally, a human experiment was conducted to investigate the threshold of human perception of envelope wave electrical stimulation. The results show that envelope wave can both increase the depth of stimulation and induce neurons to generate effective action potentials. In envelope wave electrical stimulation, the optimal modulating wave frequency was 50 Hz, and the carrier frequency was 2 kHz-3 kHz. This method is expected to play an important role in the non-invasive treatment of neurological and psychiatric disorders.</p>","PeriodicalId":49761,"journal":{"name":"Neuroinformatics","volume":"23 1","pages":"15"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation Study of Envelope Wave Electrical Nerve Stimulation Based on a Real Head Model.\",\"authors\":\"Yuhao Liu, Renling Zou, Liang Zhao, Linpeng Jin, Xiufang Hu, Xuezhi Yin\",\"doi\":\"10.1007/s12021-024-09711-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In recent years, the modulation of brain neural activity by applied electromagnetic fields has become a hot spot in neuroscience research. Transcranial direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS) are two common non-invasive neuromodulation techniques. However, conventional tACS has limited stimulation effects in the deeper parts of the brain. In this study, a method of low and medium frequency envelope wave neurostimulation is proposed, and its effectiveness and safety are evaluated by simulation and human experiment. First, we built a real head model from head MRI image data and used the finite element method to calculate the current distribution of the envelope wave in the brain. Then, a single-compartment neuron model was constructed in NEURON software to simulate the action potential generation of neurons under different frequencies of electrical stimulation. Finally, a human experiment was conducted to investigate the threshold of human perception of envelope wave electrical stimulation. The results show that envelope wave can both increase the depth of stimulation and induce neurons to generate effective action potentials. In envelope wave electrical stimulation, the optimal modulating wave frequency was 50 Hz, and the carrier frequency was 2 kHz-3 kHz. This method is expected to play an important role in the non-invasive treatment of neurological and psychiatric disorders.</p>\",\"PeriodicalId\":49761,\"journal\":{\"name\":\"Neuroinformatics\",\"volume\":\"23 1\",\"pages\":\"15\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroinformatics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12021-024-09711-4\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroinformatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12021-024-09711-4","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Simulation Study of Envelope Wave Electrical Nerve Stimulation Based on a Real Head Model.
In recent years, the modulation of brain neural activity by applied electromagnetic fields has become a hot spot in neuroscience research. Transcranial direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS) are two common non-invasive neuromodulation techniques. However, conventional tACS has limited stimulation effects in the deeper parts of the brain. In this study, a method of low and medium frequency envelope wave neurostimulation is proposed, and its effectiveness and safety are evaluated by simulation and human experiment. First, we built a real head model from head MRI image data and used the finite element method to calculate the current distribution of the envelope wave in the brain. Then, a single-compartment neuron model was constructed in NEURON software to simulate the action potential generation of neurons under different frequencies of electrical stimulation. Finally, a human experiment was conducted to investigate the threshold of human perception of envelope wave electrical stimulation. The results show that envelope wave can both increase the depth of stimulation and induce neurons to generate effective action potentials. In envelope wave electrical stimulation, the optimal modulating wave frequency was 50 Hz, and the carrier frequency was 2 kHz-3 kHz. This method is expected to play an important role in the non-invasive treatment of neurological and psychiatric disorders.
期刊介绍:
Neuroinformatics publishes original articles and reviews with an emphasis on data structure and software tools related to analysis, modeling, integration, and sharing in all areas of neuroscience research. The editors particularly invite contributions on: (1) Theory and methodology, including discussions on ontologies, modeling approaches, database design, and meta-analyses; (2) Descriptions of developed databases and software tools, and of the methods for their distribution; (3) Relevant experimental results, such as reports accompanie by the release of massive data sets; (4) Computational simulations of models integrating and organizing complex data; and (5) Neuroengineering approaches, including hardware, robotics, and information theory studies.