{"title":"基于反转-恢复MRI的深部脑结构自动分割。","authors":"Aigerim Dautkulova , Omar Ait Aider , Céline Teulière , Jérôme Coste , Rémi Chaix , Omar Ouachik , Bruno Pereira , Jean-Jacques Lemaire","doi":"10.1016/j.compmedimag.2024.102488","DOIUrl":null,"url":null,"abstract":"<div><div>Methods for the automated segmentation of brain structures are a major subject of medical research. The small structures of the deep brain have received scant attention, notably for lack of manual delineations by medical experts. In this study, we assessed an automated segmentation of a novel clinical dataset containing White Matter Attenuated Inversion-Recovery (WAIR) MRI images and five manually segmented structures (substantia nigra (SN), subthalamic nucleus (STN), red nucleus (RN), mammillary body (MB) and mammillothalamic fascicle (MT-fa)) in 53 patients with severe Parkinson’s disease. T1 and DTI images were additionally used. We also assessed the reorientation of DTI diffusion vectors with reference to the ACPC line. A state-of-the-art nnU-Net method was trained and tested on subsets of 38 and 15 image datasets respectively. We used Dice similarity coefficient (DSC), 95% Hausdorff distance (95HD), and volumetric similarity (VS) as metrics to evaluate network efficiency in reproducing manual contouring. Random-effects models statistically compared values according to structures, accounting for between- and within-participant variability. Results show that WAIR significantly outperformed T1 for DSC (0.739 ± 0.073), 95HD (1.739 ± 0.398), and VS (0.892 ± 0.044). The DSC values for automated segmentation of MB, RN, SN, STN, and MT-fa decreased in that order, in line with the increasing complexity observed in manual segmentation. Based on training results, the reorientation of DTI vectors improved the automated segmentation.</div></div>","PeriodicalId":50631,"journal":{"name":"Computerized Medical Imaging and Graphics","volume":"120 ","pages":"Article 102488"},"PeriodicalIF":5.4000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated segmentation of deep brain structures from Inversion-Recovery MRI\",\"authors\":\"Aigerim Dautkulova , Omar Ait Aider , Céline Teulière , Jérôme Coste , Rémi Chaix , Omar Ouachik , Bruno Pereira , Jean-Jacques Lemaire\",\"doi\":\"10.1016/j.compmedimag.2024.102488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Methods for the automated segmentation of brain structures are a major subject of medical research. The small structures of the deep brain have received scant attention, notably for lack of manual delineations by medical experts. In this study, we assessed an automated segmentation of a novel clinical dataset containing White Matter Attenuated Inversion-Recovery (WAIR) MRI images and five manually segmented structures (substantia nigra (SN), subthalamic nucleus (STN), red nucleus (RN), mammillary body (MB) and mammillothalamic fascicle (MT-fa)) in 53 patients with severe Parkinson’s disease. T1 and DTI images were additionally used. We also assessed the reorientation of DTI diffusion vectors with reference to the ACPC line. A state-of-the-art nnU-Net method was trained and tested on subsets of 38 and 15 image datasets respectively. We used Dice similarity coefficient (DSC), 95% Hausdorff distance (95HD), and volumetric similarity (VS) as metrics to evaluate network efficiency in reproducing manual contouring. Random-effects models statistically compared values according to structures, accounting for between- and within-participant variability. Results show that WAIR significantly outperformed T1 for DSC (0.739 ± 0.073), 95HD (1.739 ± 0.398), and VS (0.892 ± 0.044). The DSC values for automated segmentation of MB, RN, SN, STN, and MT-fa decreased in that order, in line with the increasing complexity observed in manual segmentation. Based on training results, the reorientation of DTI vectors improved the automated segmentation.</div></div>\",\"PeriodicalId\":50631,\"journal\":{\"name\":\"Computerized Medical Imaging and Graphics\",\"volume\":\"120 \",\"pages\":\"Article 102488\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computerized Medical Imaging and Graphics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0895611124001654\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computerized Medical Imaging and Graphics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0895611124001654","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Automated segmentation of deep brain structures from Inversion-Recovery MRI
Methods for the automated segmentation of brain structures are a major subject of medical research. The small structures of the deep brain have received scant attention, notably for lack of manual delineations by medical experts. In this study, we assessed an automated segmentation of a novel clinical dataset containing White Matter Attenuated Inversion-Recovery (WAIR) MRI images and five manually segmented structures (substantia nigra (SN), subthalamic nucleus (STN), red nucleus (RN), mammillary body (MB) and mammillothalamic fascicle (MT-fa)) in 53 patients with severe Parkinson’s disease. T1 and DTI images were additionally used. We also assessed the reorientation of DTI diffusion vectors with reference to the ACPC line. A state-of-the-art nnU-Net method was trained and tested on subsets of 38 and 15 image datasets respectively. We used Dice similarity coefficient (DSC), 95% Hausdorff distance (95HD), and volumetric similarity (VS) as metrics to evaluate network efficiency in reproducing manual contouring. Random-effects models statistically compared values according to structures, accounting for between- and within-participant variability. Results show that WAIR significantly outperformed T1 for DSC (0.739 ± 0.073), 95HD (1.739 ± 0.398), and VS (0.892 ± 0.044). The DSC values for automated segmentation of MB, RN, SN, STN, and MT-fa decreased in that order, in line with the increasing complexity observed in manual segmentation. Based on training results, the reorientation of DTI vectors improved the automated segmentation.
期刊介绍:
The purpose of the journal Computerized Medical Imaging and Graphics is to act as a source for the exchange of research results concerning algorithmic advances, development, and application of digital imaging in disease detection, diagnosis, intervention, prevention, precision medicine, and population health. Included in the journal will be articles on novel computerized imaging or visualization techniques, including artificial intelligence and machine learning, augmented reality for surgical planning and guidance, big biomedical data visualization, computer-aided diagnosis, computerized-robotic surgery, image-guided therapy, imaging scanning and reconstruction, mobile and tele-imaging, radiomics, and imaging integration and modeling with other information relevant to digital health. The types of biomedical imaging include: magnetic resonance, computed tomography, ultrasound, nuclear medicine, X-ray, microwave, optical and multi-photon microscopy, video and sensory imaging, and the convergence of biomedical images with other non-imaging datasets.