Chenjun Li , Dian Yang , Shun Yao , Shuyue Wang , Ye Wu , Le Zhang , Qiannuo Li , Kang Ik Kevin Cho , Johanna Seitz-Holland , Lipeng Ning , Jon Haitz Legarreta , Yogesh Rathi , Carl-Fredrik Westin , Lauren J. O’Donnell , Nir A. Sochen , Ofer Pasternak , Fan Zhang
{"title":"基于证据的集成学习在不确定性感知脑包裹中的应用。","authors":"Chenjun Li , Dian Yang , Shun Yao , Shuyue Wang , Ye Wu , Le Zhang , Qiannuo Li , Kang Ik Kevin Cho , Johanna Seitz-Holland , Lipeng Ning , Jon Haitz Legarreta , Yogesh Rathi , Carl-Fredrik Westin , Lauren J. O’Donnell , Nir A. Sochen , Ofer Pasternak , Fan Zhang","doi":"10.1016/j.compmedimag.2024.102489","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we developed an Evidential Ensemble Neural Network based on Deep learning and Diffusion MRI, namely DDEvENet, for anatomical brain parcellation. The key innovation of DDEvENet is the design of an evidential deep learning framework to quantify predictive uncertainty at each voxel during a single inference. To do so, we design an evidence-based ensemble learning framework for uncertainty-aware parcellation to leverage the multiple dMRI parameters derived from diffusion MRI. Using DDEvENet, we obtained accurate parcellation and uncertainty estimates across different datasets from healthy and clinical populations and with different imaging acquisitions. The overall network includes five parallel subnetworks, where each is dedicated to learning the FreeSurfer parcellation for a certain diffusion MRI parameter. An evidence-based ensemble methodology is then proposed to fuse the individual outputs. We perform experimental evaluations on large-scale datasets from multiple imaging sources, including high-quality diffusion MRI data from healthy adults and clinically diffusion MRI data from participants with various brain diseases (schizophrenia, bipolar disorder, attention-deficit/hyperactivity disorder, Parkinson’s disease, cerebral small vessel disease, and neurosurgical patients with brain tumors). Compared to several state-of-the-art methods, our experimental results demonstrate highly improved parcellation accuracy across the multiple testing datasets despite the differences in dMRI acquisition protocols and health conditions. Furthermore, thanks to the uncertainty estimation, our DDEvENet approach demonstrates a good ability to detect abnormal brain regions in patients with lesions that are consistent with expert-drawn results, enhancing the interpretability and reliability of the segmentation results.</div></div>","PeriodicalId":50631,"journal":{"name":"Computerized Medical Imaging and Graphics","volume":"120 ","pages":"Article 102489"},"PeriodicalIF":5.4000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DDEvENet: Evidence-based ensemble learning for uncertainty-aware brain parcellation using diffusion MRI\",\"authors\":\"Chenjun Li , Dian Yang , Shun Yao , Shuyue Wang , Ye Wu , Le Zhang , Qiannuo Li , Kang Ik Kevin Cho , Johanna Seitz-Holland , Lipeng Ning , Jon Haitz Legarreta , Yogesh Rathi , Carl-Fredrik Westin , Lauren J. O’Donnell , Nir A. Sochen , Ofer Pasternak , Fan Zhang\",\"doi\":\"10.1016/j.compmedimag.2024.102489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, we developed an Evidential Ensemble Neural Network based on Deep learning and Diffusion MRI, namely DDEvENet, for anatomical brain parcellation. The key innovation of DDEvENet is the design of an evidential deep learning framework to quantify predictive uncertainty at each voxel during a single inference. To do so, we design an evidence-based ensemble learning framework for uncertainty-aware parcellation to leverage the multiple dMRI parameters derived from diffusion MRI. Using DDEvENet, we obtained accurate parcellation and uncertainty estimates across different datasets from healthy and clinical populations and with different imaging acquisitions. The overall network includes five parallel subnetworks, where each is dedicated to learning the FreeSurfer parcellation for a certain diffusion MRI parameter. An evidence-based ensemble methodology is then proposed to fuse the individual outputs. We perform experimental evaluations on large-scale datasets from multiple imaging sources, including high-quality diffusion MRI data from healthy adults and clinically diffusion MRI data from participants with various brain diseases (schizophrenia, bipolar disorder, attention-deficit/hyperactivity disorder, Parkinson’s disease, cerebral small vessel disease, and neurosurgical patients with brain tumors). Compared to several state-of-the-art methods, our experimental results demonstrate highly improved parcellation accuracy across the multiple testing datasets despite the differences in dMRI acquisition protocols and health conditions. Furthermore, thanks to the uncertainty estimation, our DDEvENet approach demonstrates a good ability to detect abnormal brain regions in patients with lesions that are consistent with expert-drawn results, enhancing the interpretability and reliability of the segmentation results.</div></div>\",\"PeriodicalId\":50631,\"journal\":{\"name\":\"Computerized Medical Imaging and Graphics\",\"volume\":\"120 \",\"pages\":\"Article 102489\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computerized Medical Imaging and Graphics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0895611124001666\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computerized Medical Imaging and Graphics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0895611124001666","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
DDEvENet: Evidence-based ensemble learning for uncertainty-aware brain parcellation using diffusion MRI
In this study, we developed an Evidential Ensemble Neural Network based on Deep learning and Diffusion MRI, namely DDEvENet, for anatomical brain parcellation. The key innovation of DDEvENet is the design of an evidential deep learning framework to quantify predictive uncertainty at each voxel during a single inference. To do so, we design an evidence-based ensemble learning framework for uncertainty-aware parcellation to leverage the multiple dMRI parameters derived from diffusion MRI. Using DDEvENet, we obtained accurate parcellation and uncertainty estimates across different datasets from healthy and clinical populations and with different imaging acquisitions. The overall network includes five parallel subnetworks, where each is dedicated to learning the FreeSurfer parcellation for a certain diffusion MRI parameter. An evidence-based ensemble methodology is then proposed to fuse the individual outputs. We perform experimental evaluations on large-scale datasets from multiple imaging sources, including high-quality diffusion MRI data from healthy adults and clinically diffusion MRI data from participants with various brain diseases (schizophrenia, bipolar disorder, attention-deficit/hyperactivity disorder, Parkinson’s disease, cerebral small vessel disease, and neurosurgical patients with brain tumors). Compared to several state-of-the-art methods, our experimental results demonstrate highly improved parcellation accuracy across the multiple testing datasets despite the differences in dMRI acquisition protocols and health conditions. Furthermore, thanks to the uncertainty estimation, our DDEvENet approach demonstrates a good ability to detect abnormal brain regions in patients with lesions that are consistent with expert-drawn results, enhancing the interpretability and reliability of the segmentation results.
期刊介绍:
The purpose of the journal Computerized Medical Imaging and Graphics is to act as a source for the exchange of research results concerning algorithmic advances, development, and application of digital imaging in disease detection, diagnosis, intervention, prevention, precision medicine, and population health. Included in the journal will be articles on novel computerized imaging or visualization techniques, including artificial intelligence and machine learning, augmented reality for surgical planning and guidance, big biomedical data visualization, computer-aided diagnosis, computerized-robotic surgery, image-guided therapy, imaging scanning and reconstruction, mobile and tele-imaging, radiomics, and imaging integration and modeling with other information relevant to digital health. The types of biomedical imaging include: magnetic resonance, computed tomography, ultrasound, nuclear medicine, X-ray, microwave, optical and multi-photon microscopy, video and sensory imaging, and the convergence of biomedical images with other non-imaging datasets.