多场景CT图像重构的收敛-扩散去噪模型。

IF 5.4 2区 医学 Q1 ENGINEERING, BIOMEDICAL Computerized Medical Imaging and Graphics Pub Date : 2025-01-04 DOI:10.1016/j.compmedimag.2024.102491
Xinghua Ma , Mingye Zou , Xinyan Fang , Gongning Luo , Wei Wang , Suyu Dong , Xiangyu Li , Kuanquan Wang , Qing Dong , Ye Tian , Shuo Li
{"title":"多场景CT图像重构的收敛-扩散去噪模型。","authors":"Xinghua Ma ,&nbsp;Mingye Zou ,&nbsp;Xinyan Fang ,&nbsp;Gongning Luo ,&nbsp;Wei Wang ,&nbsp;Suyu Dong ,&nbsp;Xiangyu Li ,&nbsp;Kuanquan Wang ,&nbsp;Qing Dong ,&nbsp;Ye Tian ,&nbsp;Shuo Li","doi":"10.1016/j.compmedimag.2024.102491","DOIUrl":null,"url":null,"abstract":"<div><div>A generic and versatile CT Image Reconstruction (CTIR) scheme can efficiently mitigate imaging noise resulting from inherent physical limitations, substantially bolstering the dependability of CT imaging diagnostics across a wider spectrum of patient cases. Current CTIR techniques often concentrate on distinct areas such as Low-Dose CT denoising (LDCTD), Sparse-View CT reconstruction (SVCTR), and Metal Artifact Reduction (MAR). Nevertheless, due to the intricate nature of multi-scenario CTIR, these techniques frequently narrow their focus to specific tasks, resulting in limited generalization capabilities for diverse scenarios. We propose a novel Convergent–Diffusion Denoising Model (CDDM) for multi-scenario CTIR, which utilizes a stepwise denoising process to converge toward an imaging-noise-free image with high generalization. CDDM uses a diffusion-based process based on a priori decay distribution to steadily correct imaging noise, thus avoiding the overfitting of individual samples. Within CDDM, a domain-correlated sampling network (DS-Net) provides an innovative sinogram-guided noise prediction scheme to leverage both image and sinogram (<em>i.e.</em>, dual-domain) information. DS-Net analyzes the correlation of the dual-domain representations for sampling the noise distribution, introducing sinogram semantics to avoid secondary artifacts. Experimental results validate the practical applicability of our scheme across various CTIR scenarios, including LDCTD, MAR, and SVCTR, with the support of sinogram knowledge.</div></div>","PeriodicalId":50631,"journal":{"name":"Computerized Medical Imaging and Graphics","volume":"120 ","pages":"Article 102491"},"PeriodicalIF":5.4000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convergent–Diffusion Denoising Model for multi-scenario CT Image Reconstruction\",\"authors\":\"Xinghua Ma ,&nbsp;Mingye Zou ,&nbsp;Xinyan Fang ,&nbsp;Gongning Luo ,&nbsp;Wei Wang ,&nbsp;Suyu Dong ,&nbsp;Xiangyu Li ,&nbsp;Kuanquan Wang ,&nbsp;Qing Dong ,&nbsp;Ye Tian ,&nbsp;Shuo Li\",\"doi\":\"10.1016/j.compmedimag.2024.102491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A generic and versatile CT Image Reconstruction (CTIR) scheme can efficiently mitigate imaging noise resulting from inherent physical limitations, substantially bolstering the dependability of CT imaging diagnostics across a wider spectrum of patient cases. Current CTIR techniques often concentrate on distinct areas such as Low-Dose CT denoising (LDCTD), Sparse-View CT reconstruction (SVCTR), and Metal Artifact Reduction (MAR). Nevertheless, due to the intricate nature of multi-scenario CTIR, these techniques frequently narrow their focus to specific tasks, resulting in limited generalization capabilities for diverse scenarios. We propose a novel Convergent–Diffusion Denoising Model (CDDM) for multi-scenario CTIR, which utilizes a stepwise denoising process to converge toward an imaging-noise-free image with high generalization. CDDM uses a diffusion-based process based on a priori decay distribution to steadily correct imaging noise, thus avoiding the overfitting of individual samples. Within CDDM, a domain-correlated sampling network (DS-Net) provides an innovative sinogram-guided noise prediction scheme to leverage both image and sinogram (<em>i.e.</em>, dual-domain) information. DS-Net analyzes the correlation of the dual-domain representations for sampling the noise distribution, introducing sinogram semantics to avoid secondary artifacts. Experimental results validate the practical applicability of our scheme across various CTIR scenarios, including LDCTD, MAR, and SVCTR, with the support of sinogram knowledge.</div></div>\",\"PeriodicalId\":50631,\"journal\":{\"name\":\"Computerized Medical Imaging and Graphics\",\"volume\":\"120 \",\"pages\":\"Article 102491\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computerized Medical Imaging and Graphics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S089561112400168X\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computerized Medical Imaging and Graphics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S089561112400168X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

一种通用的、通用的CT图像重建(CTIR)方案可以有效地减轻由于固有物理限制而产生的成像噪声,从而大大增强了CT成像诊断在更广泛的患者病例中的可靠性。目前的ctr技术通常集中在不同的领域,如低剂量CT去噪(LDCTD)、稀疏视图CT重建(SVCTR)和金属伪影还原(MAR)。然而,由于多场景CTIR的复杂性,这些技术经常将其重点缩小到特定任务上,导致对不同场景的泛化能力有限。本文提出了一种新的多场景CTIR的收敛-扩散去噪模型(CDDM),该模型利用逐步去噪过程收敛到具有高泛化性的无成像噪声图像。CDDM使用基于先验衰减分布的扩散过程来稳定地校正成像噪声,从而避免了单个样本的过拟合。在CDDM中,域相关采样网络(DS-Net)提供了一种创新的正弦图引导噪声预测方案,以利用图像和正弦图(即双域)信息。DS-Net分析了双域表示的相关性来采样噪声分布,引入了正弦图语义来避免二次伪影。实验结果验证了该方案在各种CTIR场景下的实用性,包括LDCTD、MAR和SVCTR,并得到了正弦图知识的支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Convergent–Diffusion Denoising Model for multi-scenario CT Image Reconstruction
A generic and versatile CT Image Reconstruction (CTIR) scheme can efficiently mitigate imaging noise resulting from inherent physical limitations, substantially bolstering the dependability of CT imaging diagnostics across a wider spectrum of patient cases. Current CTIR techniques often concentrate on distinct areas such as Low-Dose CT denoising (LDCTD), Sparse-View CT reconstruction (SVCTR), and Metal Artifact Reduction (MAR). Nevertheless, due to the intricate nature of multi-scenario CTIR, these techniques frequently narrow their focus to specific tasks, resulting in limited generalization capabilities for diverse scenarios. We propose a novel Convergent–Diffusion Denoising Model (CDDM) for multi-scenario CTIR, which utilizes a stepwise denoising process to converge toward an imaging-noise-free image with high generalization. CDDM uses a diffusion-based process based on a priori decay distribution to steadily correct imaging noise, thus avoiding the overfitting of individual samples. Within CDDM, a domain-correlated sampling network (DS-Net) provides an innovative sinogram-guided noise prediction scheme to leverage both image and sinogram (i.e., dual-domain) information. DS-Net analyzes the correlation of the dual-domain representations for sampling the noise distribution, introducing sinogram semantics to avoid secondary artifacts. Experimental results validate the practical applicability of our scheme across various CTIR scenarios, including LDCTD, MAR, and SVCTR, with the support of sinogram knowledge.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.70
自引率
3.50%
发文量
71
审稿时长
26 days
期刊介绍: The purpose of the journal Computerized Medical Imaging and Graphics is to act as a source for the exchange of research results concerning algorithmic advances, development, and application of digital imaging in disease detection, diagnosis, intervention, prevention, precision medicine, and population health. Included in the journal will be articles on novel computerized imaging or visualization techniques, including artificial intelligence and machine learning, augmented reality for surgical planning and guidance, big biomedical data visualization, computer-aided diagnosis, computerized-robotic surgery, image-guided therapy, imaging scanning and reconstruction, mobile and tele-imaging, radiomics, and imaging integration and modeling with other information relevant to digital health. The types of biomedical imaging include: magnetic resonance, computed tomography, ultrasound, nuclear medicine, X-ray, microwave, optical and multi-photon microscopy, video and sensory imaging, and the convergence of biomedical images with other non-imaging datasets.
期刊最新文献
Prior knowledge-based multi-task learning network for pulmonary nodule classification Automatic Joint Lesion Detection by enhancing local feature interaction TQGDNet: Coronary artery calcium deposit detection on computed tomography CGNet: Few-shot learning for Intracranial Hemorrhage Segmentation Weakly supervised multi-modal contrastive learning framework for predicting the HER2 scores in breast cancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1