Sofie Goethals, Sandra Matz, Foster Provost, David Martens, Yanou Ramon
{"title":"隐藏数字足迹对用户隐私和个性化的影响。","authors":"Sofie Goethals, Sandra Matz, Foster Provost, David Martens, Yanou Ramon","doi":"10.1089/big.2024.0036","DOIUrl":null,"url":null,"abstract":"<p><p>Our online lives generate a wealth of behavioral records-<i>digital footprints</i>-which are stored and leveraged by technology platforms. These data can be used to create value for users by personalizing services. At the same time, however, it also poses a threat to people's privacy by offering a highly intimate window into their private traits (e.g., their personality, political ideology, sexual orientation). We explore the concept of <i>cloaking</i>: allowing users to hide parts of their digital footprints from predictive algorithms, to prevent unwanted inferences. This article addresses two open questions: (i) can cloaking be effective in the longer term, as users continue to generate new digital footprints? And (ii) what is the potential impact of cloaking on the accuracy of <i>desirable</i> inferences? We introduce a novel strategy focused on cloaking \"metafeatures\" and compare its efficacy against just cloaking the raw footprints. The main findings are (i) while cloaking effectiveness does indeed diminish over time, using metafeatures slows the degradation; (ii) there is a tradeoff between privacy and personalization: cloaking undesired inferences also can inhibit desirable inferences. Furthermore, the metafeature strategy-which yields more stable cloaking-also incurs a larger reduction in desirable inferences.</p>","PeriodicalId":51314,"journal":{"name":"Big Data","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Impact of Cloaking Digital Footprints on User Privacy and Personalization.\",\"authors\":\"Sofie Goethals, Sandra Matz, Foster Provost, David Martens, Yanou Ramon\",\"doi\":\"10.1089/big.2024.0036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Our online lives generate a wealth of behavioral records-<i>digital footprints</i>-which are stored and leveraged by technology platforms. These data can be used to create value for users by personalizing services. At the same time, however, it also poses a threat to people's privacy by offering a highly intimate window into their private traits (e.g., their personality, political ideology, sexual orientation). We explore the concept of <i>cloaking</i>: allowing users to hide parts of their digital footprints from predictive algorithms, to prevent unwanted inferences. This article addresses two open questions: (i) can cloaking be effective in the longer term, as users continue to generate new digital footprints? And (ii) what is the potential impact of cloaking on the accuracy of <i>desirable</i> inferences? We introduce a novel strategy focused on cloaking \\\"metafeatures\\\" and compare its efficacy against just cloaking the raw footprints. The main findings are (i) while cloaking effectiveness does indeed diminish over time, using metafeatures slows the degradation; (ii) there is a tradeoff between privacy and personalization: cloaking undesired inferences also can inhibit desirable inferences. Furthermore, the metafeature strategy-which yields more stable cloaking-also incurs a larger reduction in desirable inferences.</p>\",\"PeriodicalId\":51314,\"journal\":{\"name\":\"Big Data\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Big Data\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1089/big.2024.0036\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1089/big.2024.0036","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
The Impact of Cloaking Digital Footprints on User Privacy and Personalization.
Our online lives generate a wealth of behavioral records-digital footprints-which are stored and leveraged by technology platforms. These data can be used to create value for users by personalizing services. At the same time, however, it also poses a threat to people's privacy by offering a highly intimate window into their private traits (e.g., their personality, political ideology, sexual orientation). We explore the concept of cloaking: allowing users to hide parts of their digital footprints from predictive algorithms, to prevent unwanted inferences. This article addresses two open questions: (i) can cloaking be effective in the longer term, as users continue to generate new digital footprints? And (ii) what is the potential impact of cloaking on the accuracy of desirable inferences? We introduce a novel strategy focused on cloaking "metafeatures" and compare its efficacy against just cloaking the raw footprints. The main findings are (i) while cloaking effectiveness does indeed diminish over time, using metafeatures slows the degradation; (ii) there is a tradeoff between privacy and personalization: cloaking undesired inferences also can inhibit desirable inferences. Furthermore, the metafeature strategy-which yields more stable cloaking-also incurs a larger reduction in desirable inferences.
Big DataCOMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
9.10
自引率
2.20%
发文量
60
期刊介绍:
Big Data is the leading peer-reviewed journal covering the challenges and opportunities in collecting, analyzing, and disseminating vast amounts of data. The Journal addresses questions surrounding this powerful and growing field of data science and facilitates the efforts of researchers, business managers, analysts, developers, data scientists, physicists, statisticians, infrastructure developers, academics, and policymakers to improve operations, profitability, and communications within their businesses and institutions.
Spanning a broad array of disciplines focusing on novel big data technologies, policies, and innovations, the Journal brings together the community to address current challenges and enforce effective efforts to organize, store, disseminate, protect, manipulate, and, most importantly, find the most effective strategies to make this incredible amount of information work to benefit society, industry, academia, and government.
Big Data coverage includes:
Big data industry standards,
New technologies being developed specifically for big data,
Data acquisition, cleaning, distribution, and best practices,
Data protection, privacy, and policy,
Business interests from research to product,
The changing role of business intelligence,
Visualization and design principles of big data infrastructures,
Physical interfaces and robotics,
Social networking advantages for Facebook, Twitter, Amazon, Google, etc,
Opportunities around big data and how companies can harness it to their advantage.