{"title":"通过规范化流程逐步适应领域。","authors":"Shogo Sagawa, Hideitsu Hino","doi":"10.1162/neco_a_01734","DOIUrl":null,"url":null,"abstract":"<p><p>Standard domain adaptation methods do not work well when a large gap exists between the source and target domains. Gradual domain adaptation is one of the approaches used to address the problem. It involves leveraging the intermediate domain, which gradually shifts from the source domain to the target domain. In previous work, it is assumed that the number of intermediate domains is large and the distance between adjacent domains is small; hence, the gradual domain adaptation algorithm, involving self-training with unlabeled data sets, is applicable. In practice, however, gradual self-training will fail because the number of intermediate domains is limited and the distance between adjacent domains is large. We propose the use of normalizing flows to deal with this problem while maintaining the framework of unsupervised domain adaptation. The proposed method learns a transformation from the distribution of the target domains to the gaussian mixture distribution via the source domain. We evaluate our proposed method by experiments using real-world data sets and confirm that it mitigates the problem we have explained and improves the classification performance.</p>","PeriodicalId":54731,"journal":{"name":"Neural Computation","volume":" ","pages":"1-47"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gradual Domain Adaptation via Normalizing Flows.\",\"authors\":\"Shogo Sagawa, Hideitsu Hino\",\"doi\":\"10.1162/neco_a_01734\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Standard domain adaptation methods do not work well when a large gap exists between the source and target domains. Gradual domain adaptation is one of the approaches used to address the problem. It involves leveraging the intermediate domain, which gradually shifts from the source domain to the target domain. In previous work, it is assumed that the number of intermediate domains is large and the distance between adjacent domains is small; hence, the gradual domain adaptation algorithm, involving self-training with unlabeled data sets, is applicable. In practice, however, gradual self-training will fail because the number of intermediate domains is limited and the distance between adjacent domains is large. We propose the use of normalizing flows to deal with this problem while maintaining the framework of unsupervised domain adaptation. The proposed method learns a transformation from the distribution of the target domains to the gaussian mixture distribution via the source domain. We evaluate our proposed method by experiments using real-world data sets and confirm that it mitigates the problem we have explained and improves the classification performance.</p>\",\"PeriodicalId\":54731,\"journal\":{\"name\":\"Neural Computation\",\"volume\":\" \",\"pages\":\"1-47\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1162/neco_a_01734\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1162/neco_a_01734","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Standard domain adaptation methods do not work well when a large gap exists between the source and target domains. Gradual domain adaptation is one of the approaches used to address the problem. It involves leveraging the intermediate domain, which gradually shifts from the source domain to the target domain. In previous work, it is assumed that the number of intermediate domains is large and the distance between adjacent domains is small; hence, the gradual domain adaptation algorithm, involving self-training with unlabeled data sets, is applicable. In practice, however, gradual self-training will fail because the number of intermediate domains is limited and the distance between adjacent domains is large. We propose the use of normalizing flows to deal with this problem while maintaining the framework of unsupervised domain adaptation. The proposed method learns a transformation from the distribution of the target domains to the gaussian mixture distribution via the source domain. We evaluate our proposed method by experiments using real-world data sets and confirm that it mitigates the problem we have explained and improves the classification performance.
期刊介绍:
Neural Computation is uniquely positioned at the crossroads between neuroscience and TMCS and welcomes the submission of original papers from all areas of TMCS, including: Advanced experimental design; Analysis of chemical sensor data; Connectomic reconstructions; Analysis of multielectrode and optical recordings; Genetic data for cell identity; Analysis of behavioral data; Multiscale models; Analysis of molecular mechanisms; Neuroinformatics; Analysis of brain imaging data; Neuromorphic engineering; Principles of neural coding, computation, circuit dynamics, and plasticity; Theories of brain function.