自动颅面生物测量与3D T2w胎儿MRI。

PLOS digital health Pub Date : 2024-12-30 eCollection Date: 2024-12-01 DOI:10.1371/journal.pdig.0000663
Jacqueline Matthew, Alena Uus, Alexia Egloff Collado, Aysha Luis, Sophie Arulkumaran, Abi Fukami-Gartner, Vanessa Kyriakopoulou, Daniel Cromb, Robert Wright, Kathleen Colford, Maria Deprez, Jana Hutter, Jonathan O'Muircheartaigh, Christina Malamateniou, Reza Razavi, Lisa Story, Joseph V Hajnal, Mary A Rutherford
{"title":"自动颅面生物测量与3D T2w胎儿MRI。","authors":"Jacqueline Matthew, Alena Uus, Alexia Egloff Collado, Aysha Luis, Sophie Arulkumaran, Abi Fukami-Gartner, Vanessa Kyriakopoulou, Daniel Cromb, Robert Wright, Kathleen Colford, Maria Deprez, Jana Hutter, Jonathan O'Muircheartaigh, Christina Malamateniou, Reza Razavi, Lisa Story, Joseph V Hajnal, Mary A Rutherford","doi":"10.1371/journal.pdig.0000663","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Evaluating craniofacial phenotype-genotype correlations prenatally is increasingly important; however, it is subjective and challenging with 3D ultrasound. We developed an automated label propagation pipeline using 3D motion- corrected, slice-to-volume reconstructed (SVR) fetal MRI for craniofacial measurements.</p><p><strong>Methods: </strong>A literature review and expert consensus identified 31 craniofacial biometrics for fetal MRI. An MRI atlas with defined anatomical landmarks served as a template for subject registration, auto-labelling, and biometric calculation. We assessed 108 healthy controls and 24 fetuses with Down syndrome (T21) in the third trimester (29-36 weeks gestational age, GA) to identify meaningful biometrics in T21. Reliability and reproducibility were evaluated in 10 random datasets by four observers.</p><p><strong>Results: </strong>Automated labels were produced for all 132 subjects with a 0.3% placement error rate. Seven measurements, including anterior base of skull length and maxillary length, showed significant differences with large effect sizes between T21 and control groups (ANOVA, p<0.001). Manual measurements took 25-35 minutes per case, while automated extraction took approximately 5 minutes. Bland-Altman plots showed agreement within manual observer ranges except for mandibular width, which had higher variability. Extended GA growth charts (19-39 weeks), based on 280 control fetuses, were produced for future research.</p><p><strong>Conclusion: </strong>This is the first automated atlas-based protocol using 3D SVR MRI for fetal craniofacial biometrics, accurately revealing morphological craniofacial differences in a T21 cohort. Future work should focus on improving measurement reliability, larger clinical cohorts, and technical advancements, to enhance prenatal care and phenotypic characterisation.</p>","PeriodicalId":74465,"journal":{"name":"PLOS digital health","volume":"3 12","pages":"e0000663"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11684610/pdf/","citationCount":"0","resultStr":"{\"title\":\"Automated craniofacial biometry with 3D T2w fetal MRI.\",\"authors\":\"Jacqueline Matthew, Alena Uus, Alexia Egloff Collado, Aysha Luis, Sophie Arulkumaran, Abi Fukami-Gartner, Vanessa Kyriakopoulou, Daniel Cromb, Robert Wright, Kathleen Colford, Maria Deprez, Jana Hutter, Jonathan O'Muircheartaigh, Christina Malamateniou, Reza Razavi, Lisa Story, Joseph V Hajnal, Mary A Rutherford\",\"doi\":\"10.1371/journal.pdig.0000663\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>Evaluating craniofacial phenotype-genotype correlations prenatally is increasingly important; however, it is subjective and challenging with 3D ultrasound. We developed an automated label propagation pipeline using 3D motion- corrected, slice-to-volume reconstructed (SVR) fetal MRI for craniofacial measurements.</p><p><strong>Methods: </strong>A literature review and expert consensus identified 31 craniofacial biometrics for fetal MRI. An MRI atlas with defined anatomical landmarks served as a template for subject registration, auto-labelling, and biometric calculation. We assessed 108 healthy controls and 24 fetuses with Down syndrome (T21) in the third trimester (29-36 weeks gestational age, GA) to identify meaningful biometrics in T21. Reliability and reproducibility were evaluated in 10 random datasets by four observers.</p><p><strong>Results: </strong>Automated labels were produced for all 132 subjects with a 0.3% placement error rate. Seven measurements, including anterior base of skull length and maxillary length, showed significant differences with large effect sizes between T21 and control groups (ANOVA, p<0.001). Manual measurements took 25-35 minutes per case, while automated extraction took approximately 5 minutes. Bland-Altman plots showed agreement within manual observer ranges except for mandibular width, which had higher variability. Extended GA growth charts (19-39 weeks), based on 280 control fetuses, were produced for future research.</p><p><strong>Conclusion: </strong>This is the first automated atlas-based protocol using 3D SVR MRI for fetal craniofacial biometrics, accurately revealing morphological craniofacial differences in a T21 cohort. Future work should focus on improving measurement reliability, larger clinical cohorts, and technical advancements, to enhance prenatal care and phenotypic characterisation.</p>\",\"PeriodicalId\":74465,\"journal\":{\"name\":\"PLOS digital health\",\"volume\":\"3 12\",\"pages\":\"e0000663\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11684610/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLOS digital health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pdig.0000663\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLOS digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1371/journal.pdig.0000663","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目的:产前评估颅面表型与基因型的相关性越来越重要;然而,它是主观的和具有挑战性的3D超声。我们开发了一种自动标签传播管道,使用3D运动校正,切片-体积重建(SVR)胎儿MRI进行颅面测量。方法:通过文献回顾和专家共识,确定31个颅面生物特征用于胎儿MRI。具有明确解剖标志的MRI图谱作为受试者注册、自动标记和生物识别计算的模板。我们评估了108名健康对照和24名妊娠晚期(29-36周胎龄,GA)的唐氏综合征胎儿(T21),以确定T21中有意义的生物特征。由4名观察员在10个随机数据集中评估可靠性和可重复性。结果:所有132名受试者均生成了自动标签,放置错误率为0.3%。包括前颅底长度和上颌长度在内的7项测量结果显示,T21组与对照组之间存在显著差异,且具有较大的效应量(ANOVA, p)。结论:这是首个使用3D SVR MRI进行胎儿颅面生物识别的基于自动图谱的方案,准确地揭示了T21队列中颅面形态差异。未来的工作应侧重于提高测量的可靠性,更大的临床队列和技术进步,以加强产前护理和表型特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automated craniofacial biometry with 3D T2w fetal MRI.

Objectives: Evaluating craniofacial phenotype-genotype correlations prenatally is increasingly important; however, it is subjective and challenging with 3D ultrasound. We developed an automated label propagation pipeline using 3D motion- corrected, slice-to-volume reconstructed (SVR) fetal MRI for craniofacial measurements.

Methods: A literature review and expert consensus identified 31 craniofacial biometrics for fetal MRI. An MRI atlas with defined anatomical landmarks served as a template for subject registration, auto-labelling, and biometric calculation. We assessed 108 healthy controls and 24 fetuses with Down syndrome (T21) in the third trimester (29-36 weeks gestational age, GA) to identify meaningful biometrics in T21. Reliability and reproducibility were evaluated in 10 random datasets by four observers.

Results: Automated labels were produced for all 132 subjects with a 0.3% placement error rate. Seven measurements, including anterior base of skull length and maxillary length, showed significant differences with large effect sizes between T21 and control groups (ANOVA, p<0.001). Manual measurements took 25-35 minutes per case, while automated extraction took approximately 5 minutes. Bland-Altman plots showed agreement within manual observer ranges except for mandibular width, which had higher variability. Extended GA growth charts (19-39 weeks), based on 280 control fetuses, were produced for future research.

Conclusion: This is the first automated atlas-based protocol using 3D SVR MRI for fetal craniofacial biometrics, accurately revealing morphological craniofacial differences in a T21 cohort. Future work should focus on improving measurement reliability, larger clinical cohorts, and technical advancements, to enhance prenatal care and phenotypic characterisation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Beyond the screen: Exploring the dynamics of social media influencers, digital food marketing, and gendered influences on adolescent diets. Children's digital privacy on fast-food and dine-in restaurant mobile applications. An AI-based approach to predict delivery outcome based on measurable factors of pregnant mothers. Community perspectives regarding brain-computer interfaces: A cross-sectional study of community-dwelling adults in the UK. From print to perspective: A mixed-method analysis of the convergence and divergence of COVID-19 topics in newspapers and interviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1