An AI-based approach to predict delivery outcome based on measurable factors of pregnant mothers.

PLOS digital health Pub Date : 2025-02-05 eCollection Date: 2025-02-01 DOI:10.1371/journal.pdig.0000543
Michael Owusu-Adjei, James Ben Hayfron-Acquah, Twum Frimpong, Abdul-Salaam Gaddafi
{"title":"An AI-based approach to predict delivery outcome based on measurable factors of pregnant mothers.","authors":"Michael Owusu-Adjei, James Ben Hayfron-Acquah, Twum Frimpong, Abdul-Salaam Gaddafi","doi":"10.1371/journal.pdig.0000543","DOIUrl":null,"url":null,"abstract":"<p><p>The desire for safer delivery mode that preserves the lives of both mother and child with minimal or no complications before, during and after childbirth is the wish for every expectant mother and their families. However, the choice for any particular delivery mode is supposedly influenced by a number of factors that leads to the ultimate decision of choice. Some of the factors identified include maternal birth history, maternal and child health conditions prevailing before and during labor onset. Predictive modeling has been used extensively to determine important contributory factors or artifacts influencing delivery choice in related research studies. However, missing among a myriad of features used in various research studies for this determination is maternal history of spontaneous, threatened and inevitable abortion(s). How its inclusion impacts delivery outcome has not been covered in extensive research work. This research work therefore takes measurable maternal features that include real time information on administered partographs to predict delivery outcome. This is achieved by adopting effective feature selection technique to estimate variable relationships with the target variable. Three supervised learning techniques are used and evaluated for performance. Prediction accuracy score of area under the curve obtained show Gradient Boosting classifier achieved 91% accuracy, Logistic Regression 93% and Random Forest 91%. Balanced accuracy score obtained for these techniques were; Gradient Boosting 82.73%, Logistic Regression 84.62% and Random Forest 83.02%. Correlation statistic for variable independence among input variables showed that delivery outcome type as an output is associated with fetal gestational age and the progress of maternal cervix dilatation during labor onset.</p>","PeriodicalId":74465,"journal":{"name":"PLOS digital health","volume":"4 2","pages":"e0000543"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11798466/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLOS digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1371/journal.pdig.0000543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The desire for safer delivery mode that preserves the lives of both mother and child with minimal or no complications before, during and after childbirth is the wish for every expectant mother and their families. However, the choice for any particular delivery mode is supposedly influenced by a number of factors that leads to the ultimate decision of choice. Some of the factors identified include maternal birth history, maternal and child health conditions prevailing before and during labor onset. Predictive modeling has been used extensively to determine important contributory factors or artifacts influencing delivery choice in related research studies. However, missing among a myriad of features used in various research studies for this determination is maternal history of spontaneous, threatened and inevitable abortion(s). How its inclusion impacts delivery outcome has not been covered in extensive research work. This research work therefore takes measurable maternal features that include real time information on administered partographs to predict delivery outcome. This is achieved by adopting effective feature selection technique to estimate variable relationships with the target variable. Three supervised learning techniques are used and evaluated for performance. Prediction accuracy score of area under the curve obtained show Gradient Boosting classifier achieved 91% accuracy, Logistic Regression 93% and Random Forest 91%. Balanced accuracy score obtained for these techniques were; Gradient Boosting 82.73%, Logistic Regression 84.62% and Random Forest 83.02%. Correlation statistic for variable independence among input variables showed that delivery outcome type as an output is associated with fetal gestational age and the progress of maternal cervix dilatation during labor onset.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Forecasting mental states in schizophrenia using digital phenotyping data. Beyond the screen: Exploring the dynamics of social media influencers, digital food marketing, and gendered influences on adolescent diets. Children's digital privacy on fast-food and dine-in restaurant mobile applications. An AI-based approach to predict delivery outcome based on measurable factors of pregnant mothers. Community perspectives regarding brain-computer interfaces: A cross-sectional study of community-dwelling adults in the UK.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1